
Chemist and Metallurgist

1.	An electrostatic precipitator is normally used for separating particles from gases
	when
	 (1) particle size is greater than 1 mm (2) particle size is less than 1 micorn (3) gases contain high concentration of carbon monoxide (4) gases contain high concentration of solids Ans: 2
2.	The Weber number can be used to estimate
	 ratio of inertial and surface tension forces ratio of inertial and compressibility forces ratio of inertial and centrifugal forces ration of pressure and surface tension forces
	Ans: 1
3.	Indirect contact heat exchangers are preferred over direct heat exchangers
	 because (1) Heat transfer co-efficient are high (2) There is no risk of contamination due to mixing (3) There is no mist formation (4) Cost of equipment is lower Ans: 2
4.	Which of the following fuels has the highest calorific value per unit mass?
C	(1) Coal (2) Kerosene (3) Natural gas (4) Furnace oil
	FUEL OIL GROSS CALORIFIC VALUE (KCAL/KG)
	Kerosene - 11,100
	DIESEL OIL – 10,800
\mathbf{C}	L.D.O - 10,700
\sim	FURNACE OIL - 10,500 LSHS - 10,600
	https://beeindia.gov.in/sites/default/files/2Ch1.pdf
	Indian coal - 4000 to 6000

Methane CH ₄	70-90%
Ethane C ₂ H ₆	0-20%
Propane C ₃ H ₈	Butane C ₄ H ₁₀ Carbon Dioxide CO ₂ 0-8%
Oxygen O ₂	0-0.2%
Nitrogen N ₂	0-5%
Hydrogen sulphide H ₂	S 0-5%
Rare gasesA, He, Ne, Xe	trace

HEAT VALUES OF VARIOUS FUELS

The heat value of a fuel is the amount of heat released during its combustion. Also referred to as energy or calorific value, heat value is a measure of a fuel's energy density, and is expressed in energy (joules) per specified amount (*e.g.* kilograms).

		Heat value
	Hydrogen (H ₂)	120-142 MJ/kg
	Methane (CH ₄)	50-55 MJ/kg
	Methanol (CH ₃ OH)	22.7 MJ/kg
	Dimethyl ether - DME (CH ₃ OCH ₃)	29 MJ/kg
	Petrol/gasoline	44-46 MJ/kg
	Diesel fuel	42-46 MJ/kg
	Crude oil	42-47 MJ/kg
	Liquefied petroleum gas (LPG)	46-51 MJ/kg
	Natural gas	42-55 MJ/kg
つ	Hard black coal (IEA definition)	>23.9 MJ/kg
	Hard black coal (Australia & Canada)	c. 25 MJ/kg

	Sub-bituminous coal (IEA defini	ition)	17.4-23.9 MJ/kg		
	Sub-bituminous coal (Australia	& Canada)	c. 18 MJ/kg		
	Lignite/brown coal (IEA definiti	on)	<17.4 MJ/kg		
	Lignite/brown coal (Australia, e	electricity)	c. 10 MJ/kg		
	Firewood (dry)		16 MJ/kg		
	https://world-nuclear.org/info values-of-various-fuels.a		ry/facts-and-figu	ires/heat-	
5. W	which of the following fuels has the	highest calor	ific value per uni	it mass?	
(2)) Coal (2) Kerosene	(3) Natu	ral gas (4)	Furnace oil	
Ar	ns: 4		S		_
	HEAT VALUES OF VARIOUS FUEL The heat value of a fuel is the am Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms).	nount of heat alorific value essed in ener	, heat value is a	a measure of a	Ļ
	The heat value of a fuel is the an Also referred to as energy or ca fuel's energy density, and is expre	nount of heat alorific value	, heat value is a	a measure of a	Ļ
	The heat value of a fuel is the an Also referred to as energy or ca fuel's energy density, and is expre	nount of heat alorific value essed in ener	e, heat value is a gy (joules) per sp	a measure of a	Ļ
	The heat value of a fuel is the am Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms).	nount of heat alorific value essed in ener Heat value	e, heat value is a gy (joules) per sp	a measure of a	Ļ
	The heat value of a fuel is the am Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms).	nount of heat alorific value essed in ener Heat value 120-142 MJ/	e, heat value is a gy (joules) per sp	a measure of a	Ļ
	The heat value of a fuel is the an Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms). Hydrogen (H ₂) Methane (CH ₄)	nount of heat alorific value essed in ener Heat value 120-142 MJ/ 50-55 MJ/kg	e, heat value is a gy (joules) per sp	a measure of a	Ļ
çer	The heat value of a fuel is the an Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms). Hydrogen (H ₂) Methane (CH ₄) Methanol (CH ₃ OH)	nount of heat alorific value essed in ener Heat value 120-142 MJ/ 50-55 MJ/kg 22.7 MJ/kg	, heat value is a gy (joules) per sp kg	a measure of a	Ļ
Ser	The heat value of a fuel is the an Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms). Hydrogen (H ₂) Methane (CH ₄) Methanol (CH ₃ OH) Dimethyl ether - DME (CH ₃ OCH ₃)	nount of heat alorific value essed in ener Heat value 120-142 MJ/ 50-55 MJ/kg 22.7 MJ/kg 29 MJ/kg	, heat value is a gy (joules) per sp kg	a measure of a	Ļ
ialser	The heat value of a fuel is the an Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms). Hydrogen (H ₂) Methane (CH ₄) Methanol (CH ₃ OH) Dimethyl ether - DME (CH ₃ OCH ₃) Petrol/gasoline	nount of heat alorific value essed in enery Heat value 120-142 MJ/ 50-55 MJ/kg 22.7 MJ/kg 29 MJ/kg 44-46 MJ/kg	, heat value is a gy (joules) per sp kg	a measure of a	Ļ
	The heat value of a fuel is the an Also referred to as energy or ca fuel's energy density, and is expre (<i>e.g.</i> kilograms). Hydrogen (H ₂) Methane (CH ₄) Methanol (CH ₃ OH) Dimethyl ether - DME (CH ₃ OCH ₃) Petrol/gasoline Diesel fuel	hount of heat alorific value essed in enery Heat value 120-142 MJ/ 50-55 MJ/kg 22.7 MJ/kg 29 MJ/kg 44-46 MJ/kg 42-46 MJ/kg	, heat value is a gy (joules) per sp kg	a measure of a	Ļ

sssfep.com

Hard black coal (IEA definition) >23.9 MJ/kg Hard black coal (Australia & c. 25 MJ/kg Canada) c. 25 MJ/kg Sub-bituminous coal (IEA definition) 17.4-23.9 MJ/kg Sub-bituminous coal (Australia & c. 18 MJ/kg	105
Canada)Sub-bituminous coal (IEA definition)17.4-23.9 MJ/kg	lon
definition) MJ/kg	100
Sub-bituminous coal (Australia & c. 18 MJ/kg	
Canada)	
Lignite/brown coal (IEA definition) <17.4 MJ/kg	
Lignite/brown coal (Australia, c. 10 MJ/kg electricity)	
Firewood (dry) 16 MJ/kg	
6. The most widely used coagulant for removing suspended impurities from water is	
 (1) Bleaching power (2) Chlorine (3) Calcium sulphate (4) Alum 	
Ideal gas law is applicable at	
(1) low temperature, low pressure (2) high temperature, high pressure	
(4) high temperature, low pressure	
Ans: 4	
For an ideal fluid flow the Reynolds number is	
(1) 2100 (2) 100 (3) 0 (4) infinity	
Ans: 4	
A solid is transformed into vapour without going through the liquid phase at	

		 triple point below triple point 	(2) boiling point(4) always					
		Ans: 1						
	10.	The kinetic energy of gas molecule is zero at						
		(1) 0° C (2) 279° C	(3) 100°C	(4) -273°C				
		Ans: 4		Q°)				
	11.	Styrene-Butadiene rubber is commercial	lly manufactured by					
		(1) Bulk polymerization	(2) Suspension polyn	perization				
		(3) Solution polymerization	(4) Emulsion polyme	rization				
		Ans: 2						
	12.	When an unsaturated air-water mixture	is heated at constant pro	essure, then				
		 (1) partial pressure of water vapour incr (2) specific humidity decreases (3) relative humidity increases (4) relative humidity decreases 	eases					
		Ans: 4						
	13.	According to the kinetic theory, the there proportional to	rmal conductivity of a	monoatomic gas is				
		(1) T (2) T ^{0.5} Ans: 2	(3) $T^{1.5}$	(4) T^2				
	cQ							
	14.	The preferred material of construction for	or storage tanks for 98%	6 sulphuric acid is				
	\sim	(1) Aluminium	(2) Lead					
		(3) Stainless steel 316	(4) Mild steel					
500	7	Ans: 2						
	15.	A Carnot cycle consists of the following	s steps					

(1) two isothermals and two isentropics (2) two isobars and two

(4)

tow isothermals and two

eramour

isothermals

(3) two isochorics and two isobar isochorics

Ans: 1

Fig...

16.

Gibbs phase rule finds application when the heat transfer occurs by

(1) Conduction (2) Convection (3) Radiation Condensation

Ans: 4

17. For hydrogen and hydrogen like single electron systems, the energy and size of an orbital is determined exclusively by

- (1) principal quantum number
- (2) principal and spin quantum numbers
- (3) spin and magnetic quantum numbers
- (4) magnetic and principal quantum numbers

Ans: 1

- 18. Which one of the following statements is correct?
 - (1) All ferroelectric solids are piezoelectric too
 - (2) All piezoelectric solids are ferroelectric too
 - (3) Bohr magneton is the unit of dipole moment
 - (4) Glass is an alloy

19.

Which is the property that generally increases from left to right and decreases from top to bottom in the periodic table?

- (1) Covalent radius
- (3) Electronegativity

- (2) Atomic weight
- (4) Ionic radius

Ans: 3

Naturally occurring carbon consists of

20.

		(2) or (3) o	ne stable iso ne stable is	opes and rad olate and two otope and or otopes and t	o radioacti ne radioact	ve				2
		Ans: 1							an	$b_{\mathcal{O}}$
2	1.	Whic	h of the fol	lowing is dia	amagnetic	2		Q	6,	
		(1) H Ans: -	⁷ 2 4	(2) O ₂	(3) N	J ₂	(4) Bo	th (1) and (2)		
22	2.	Whic	h pair has t	ne same ator	nic radius	for both the el	ements?	, ,		
		(1) L Ans: 2	i and Na	(2) Ag and	i Au	(3) Ag and C	Cu	(4) P and A	S	
2:		to its j (1) Ir (2) De	pH? ncreases to ecreases sli emains unc	a level atlea ghtly from 7	st 2 or 3 u	e atmosphere f	`or a few d	ays, what hap	opens	
24	4. 5	In a D Thym		ire, how ma	ny hydrogo	en bonds are f	ormed bet	ween Adenine	e and	
cocif		(1) 4 Ans: 3		(2) 3		(3) 2		(4) 1		
2:	5.	The a	lpha particl	es cause lun	ninescence	on striking a				
		(1) S	odium sulp	hide screen		(2) Potassium	m sulphide	e screen		

sssfep.com

	(3) Zinc sulphide screen	(4) Copper sulphide screen	
	Ans: 3		
26.	Silica in any form is		5
	 (1) Reactive (3) Highly reactive 	(2) Unreactive (4) Inert	
	Ans: 2		
27.	The metal which does not gi	ve H ₂ on reaction with dil. HCl is	
	(1) Iron (2) Zinc	(3) Calcium (4) Silver	
	Ans: 4		
28.	Brown ring test is used for the	ne detection ofradical	
	(1) Nitrite (2) Nitrate	e (3) Sulphate (4) Sulphide	
	Ans: 2		
29.	The total number of quantum is	n numbers needed to describe an electron in an atom	
	(1) 4 (2) 3	(3) 2 (4) 1	
	Ans: 1		
30.	1 0 0	ame molecular formula but possessing different difference in structure are termed as	
	(1) Hydrocarbons(3) Carbon chain compound	(2) Isomers (4) None of the three are correct	
. 5	Ans: 2		
50010	What is the major compon cooling system?	ent of permanent type of antifreeze for automobile	
202	 (1) Ethyl alcohol (2) Methenol 	(2) Ethylene glycol(4) Ether	
)	(3) Methanol Ans: 2	(4) Ether	
	·		

32. A process is said to be _____ if the pressure remains unchanged during the process Recampur (1) Cyclic (2) Isothermal (3) Isobaric (4) Isochoric Ans: 3 Atoms with nearly filled shells of electrons will tend to have higher 33. (1) Electro positivity (2) Electro negativity (3) Electron affinity (4) Resonance energy Ans: 2 A mixture of carbon dioxide and hydrogen obtained in a process is called 34. (1) Solid gas Carbon gas (3) Hydrogen gas Vater gas Ans: 4 35. Which type of bond is present in hydrogen molecule? (1) Ionic (2) Covalent (3) Hydrogen (4) Metallic Ans: 2 Marsh test is used for the detection of 36. Cadmium (2) Bismuth (4) Copper Arsenic Ans: 3 Absolute zero may be defined as the temperature at which (1) Molecular motion in a gas would cease (2) all substances freeze (3) water freezes (4) a liquid is converted into solid