
| <i>It</i> 2. | is given that: $x = 2(180 - x) \rightarrow 3x = 360$<br>Find the value of $\log_3 9 + \log_3 12 - \log_3 4$             | $\rightarrow x = 120.$                                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|              | 1. zero 2. 1                                                                                                            | 3.2 4.3                                                |
|              | Ans:4                                                                                                                   | X                                                      |
|              | Explanation                                                                                                             |                                                        |
|              | The given sum is: $\log_3 \frac{9 \times 12}{4} = \log_3 27 = \log_3 27$                                                | $g_3 3^3 = 3 \log_3 3 = 3$                             |
| 3.           | If $x+y = 7$ and $x^2 + y^2 = 25$ , find the value                                                                      | C C                                                    |
|              | 1. 7/25 2. 25/7                                                                                                         | <b>3</b> . <b>1</b> /7 <b>4</b> . 12/7                 |
|              | Ans:3                                                                                                                   |                                                        |
|              | Explanation<br>$\frac{1}{2} + \frac{1}{2} - \frac{x+y}{2} - \frac{x+y}{2} - \frac{7x^2}{2}$                             | 147                                                    |
|              | $\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy} = \frac{x+y}{\frac{1}{4}[(x+y)^2 - (x^2 - y^2)]} = \frac{7x^2}{7^2 - 25} =$ | $= \frac{14}{7^2 - 25} = \frac{14}{24} = \frac{7}{12}$ |
| 4.           | The equation $x^2 - 5x + 6 = 0$ represents                                                                              |                                                        |
|              | 1. A pair of straight lines through origin                                                                              | 2. Two perpendicular straight lines                    |
|              | 3. A circle<br>Ans:4                                                                                                    | 4.A parabola                                           |
| Explan       | ation                                                                                                                   |                                                        |
| -            | ven quadratic equation $(x^2 - 5x + 6)=0$ is of equation for a parabola and its graph is shown                          |                                                        |
| general      |                                                                                                                         |                                                        |

Box. Polynomial equations



| F  | Ans: 4                           |                                                                |                                                             |                                                |              |
|----|----------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------|
|    | Explana                          |                                                                | $-b^2$ , $a^2-b^2$ , .                                      | 2                                              |              |
|    | Given su                         | m is of the form = $\frac{a}{a}$                               | $\frac{-b^2}{-b} + \frac{a^2 - b^2}{a + b} = a + b + a - b$ | =2a                                            |              |
|    | = 65 × 2                         | = 130                                                          |                                                             |                                                |              |
| 7  | 7. The areas of the              | ree adjacent sides of a                                        | a cuboid are l, b and h. I                                  | ts volume is                                   | 2            |
|    | 1. $\sqrt{lbh}$                  | 2. lbh                                                         | 3. $l^2b^2h^2$                                              | 4. None                                        |              |
|    | Ans: 1                           |                                                                |                                                             |                                                | $\mathbf{O}$ |
| Г  | Explanation                      |                                                                |                                                             | X                                              |              |
|    | 3 sides are given                | $1 \text{ by } \sqrt{\ell} \sqrt{b} \sqrt{h}$                  |                                                             | 0                                              |              |
|    | -                                | $\overline{\ell} \times \sqrt{b} \times \sqrt{h} = \sqrt{lbh}$ | -                                                           | × O                                            |              |
| L  |                                  |                                                                |                                                             |                                                |              |
|    | 8. Find the sum                  | of $1^3 + 2^3 + 3^3 + \dots$                                   | 10 <sup>3</sup>                                             |                                                |              |
|    |                                  |                                                                | $\langle O \rangle$                                         |                                                |              |
|    | 1. 3025                          | 2. 2025                                                        | 3.3675                                                      | 4. 2675                                        |              |
|    | Ans: 1                           |                                                                | ×0`                                                         |                                                |              |
| Γ  | Explana                          |                                                                |                                                             |                                                |              |
|    | The sum                          | of given numbers =                                             | $\left(\frac{n(n+1)}{2}\right)^2$ where $n = 10$            | )                                              |              |
|    |                                  |                                                                | $=\left(\frac{10\times11}{2}\right)^2$                      |                                                |              |
|    |                                  | = 55                                                           | $5 \times 55 = 3025$                                        |                                                |              |
| _  |                                  |                                                                | n (a) n                                                     |                                                |              |
| 9. | For non-zero r                   | numbers a and b, $\left(\frac{a}{b}\right)$                    | $^{n} \div \left(\frac{a}{b}\right)^{n}$ , where m > n      | i, is equal to                                 |              |
|    | $1\left(\frac{a}{b}\right)^{mn}$ | $2\left(\frac{a}{b}\right)^{m+n}$                              | $3\left(\frac{a}{b}\right)^{m-n}$                           | 4) $\left(\left(\frac{a}{b}\right)^m\right)^n$ |              |
| (  | Ans 3                            |                                                                |                                                             |                                                |              |
|    |                                  |                                                                |                                                             |                                                |              |
|    | 10. The num                      | ber of years for an an                                         | nount of money to treble                                    | e at 16% simple interes                        | t is :       |
| 5  | 1.12 1/2                         | 2.10                                                           | 3.8 1/2                                                     | 4.6                                            |              |
|    | Ans:1                            |                                                                |                                                             |                                                |              |
| Γ  | Explana                          |                                                                | DND                                                         |                                                |              |
|    | For simp                         | le interest case, Sum,                                         | $A = P + \frac{PNR}{100}$                                   |                                                |              |

It is given that,  $3P = \left(P + \frac{PNR}{100}\right)$   $3P = P + \frac{PN \times 16}{100}$   $2P = \frac{PN \times 16}{100} \rightarrow 2 = \frac{16N}{100}$  $\therefore N = 12 \frac{1}{2}$ 

11. If the radius of a sphere is increased by 50% then the increase in the surface area of the sphere will be:

N.

|      |     | 1.100%                           | 2.125%                                            | 3.150%                                  | 4.200%                    |
|------|-----|----------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------|
|      |     | Ans:2                            |                                                   |                                         |                           |
|      |     | Explanation                      |                                                   |                                         |                           |
|      |     | Surface area of                  | sphere, $S = 4\pi r^2$ ,                          |                                         | . 00.                     |
|      |     | As per given co                  | ondition, $r \rightarrow 1.5r$                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                           |
|      |     | $\therefore S \to 4\pi \ (1.5r)$ | $^{2}=4\pi \text{ x}2.25r^{2}=2.25 \text{ tim}$   | es;                                     |                           |
|      |     | Therefore incre                  | ease in surface area is 1                         | .25 times, i.e., 125%                   |                           |
|      | 12. | If all the side necessarily be   |                                                   | touch a circle, then                    | the parallelogram must    |
|      |     | 1. Square                        | 2. Rectangle                                      | 3. Rhombus                              | 4. None of these          |
|      |     | Ans: 2                           | ieth                                              |                                         |                           |
|      |     | Note: If all the s               | ides of a parallelogram                           | touch a circle, then the                | he parallelogram must     |
|      |     | -                                | rectangle. Also, if all t ecessarily be a square. | he sides of a rhombus                   | touch a circle, then the  |
|      | 13. | A can do a pie                   | ce of work in 'p' days                            | and B can do the sam                    | ne work in 'q' days. Then |
|      | the | number of days                   | s in which A and B can                            | together do that work                   | c is                      |
|      | 5   | $1.\frac{p+q}{2}$                | $2 \cdot \frac{1}{p} + \frac{1}{q}$               | $3.\frac{pq}{p+q}$                      | 4. pq                     |
|      |     | Ans.3.                           |                                                   |                                         |                           |
|      |     | Explanation                      |                                                   |                                         |                           |
|      |     | A's one day's                    | work $=\frac{1}{p}$ ;                             |                                         |                           |
| 5000 |     | B's one day's v                  | vork $=\frac{1}{q};$                              |                                         |                           |
|      |     | (A+B)'s one of                   | lay's work $=$ $\frac{1}{p} + \frac{1}{q}$ ;      |                                         |                           |

| Hence, A and B both can do that work $=\frac{1}{\frac{p+q}{pq}}=\frac{pq}{p+q}$ . |
|-----------------------------------------------------------------------------------|
|                                                                                   |

14. A shopkeeper marks his goods 40% above the cost price and allows a discount of

| 25%    | and   | his | gain | %      | is |
|--------|-------|-----|------|--------|----|
| 1. 5%  | 2.10% | 3.  | 15%  | 4. 20% | 5  |
| Ans. 1 |       |     |      |        | 3  |

|     | Ans. 1                                                                                                     |
|-----|------------------------------------------------------------------------------------------------------------|
|     | Explanation<br>Assume CP = 100<br>The sele structures CP > meriled price >> discounted price               |
|     | The sale structure: $CP \rightarrow$ marked price $\rightarrow$ discounted price<br>Marked price = 1.4×CP; |
|     | Price after discount = $0.75 \times 1.4 \times CP = 1.05 \times CP$ ;                                      |
|     | % gain = $(1.05 \text{ CP-CP}) \times \frac{100}{\text{CP}} = 5\%$ .                                       |
|     |                                                                                                            |
| 15. | The ratio of the ages of two boys is 3:4. After 3 years, the ratio will be 4:5. The ratio                  |
|     | of their ages after 21 years will be                                                                       |
|     | 1. 14:17 2. 17:19 3. 11:12 4. 10:11                                                                        |
|     | Ans. 4                                                                                                     |
|     | Explanation                                                                                                |
|     | Let the present ages of the boys be $3x$ and $4x$ ;                                                        |
|     | After 3 years, ages relation is $\frac{3x+3}{4x+3} = \frac{4}{5} = \rightarrow x=3;$                       |
|     | Hence, the present ages 3x and 4x is 9 and 12 respectively.                                                |
|     | Ratio of ages after 21 years is $=\frac{9+21}{12+21}=\frac{30}{33}=10$ : 11                                |

16. The cost price of 25 books is equal to the selling price of 20 books. The profit percent is

3.24%

4.25%

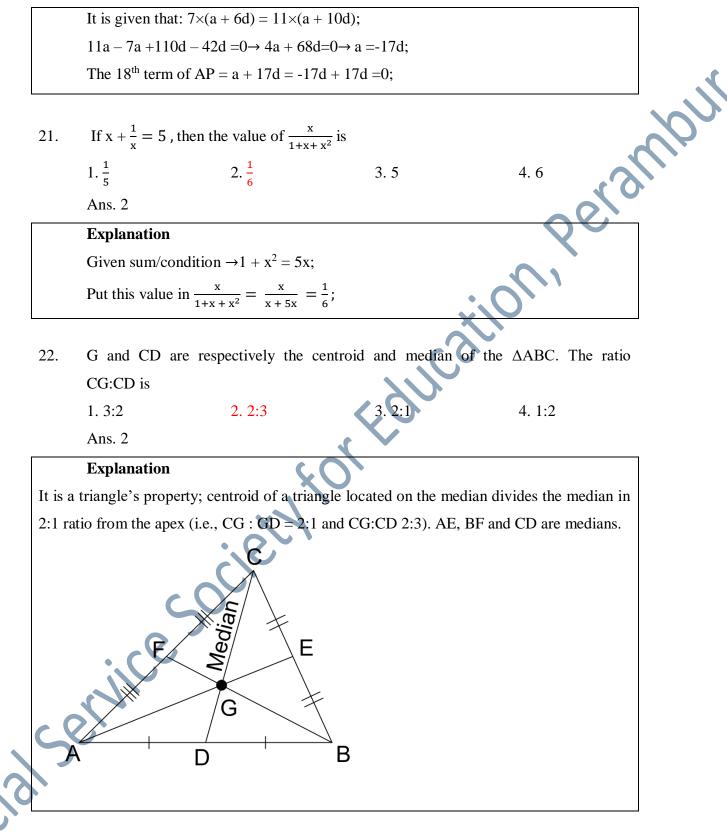
1. 20%

Ans. 4

## Explanation

 $25 \times CP = 20 \times SP;$ 

 $\therefore$  The cost price of 25 books= 20 books' selling piece


2.22%

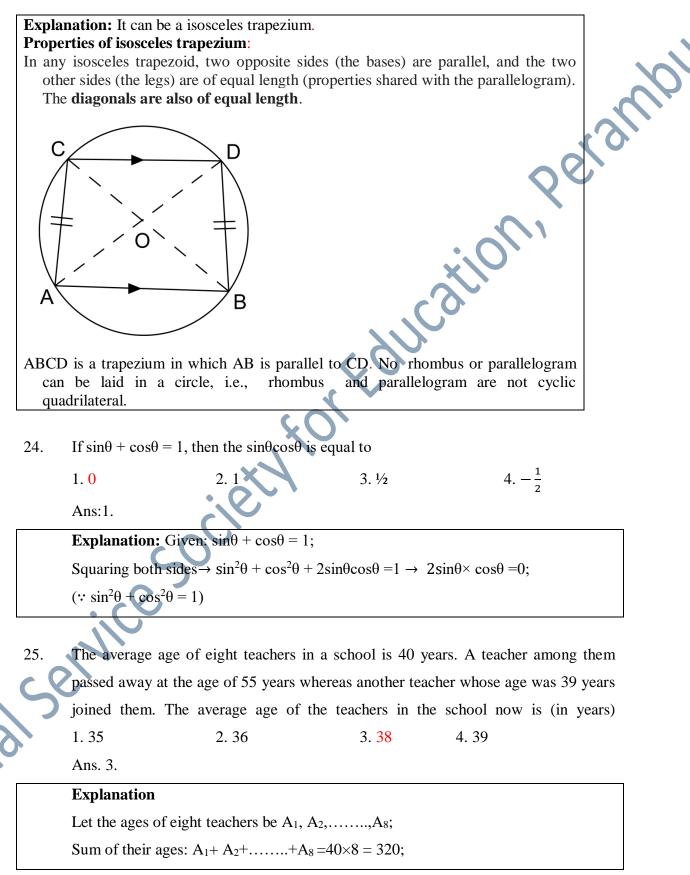
Profit = the selling price of 5 books

$$=\frac{5}{20}=25\%$$

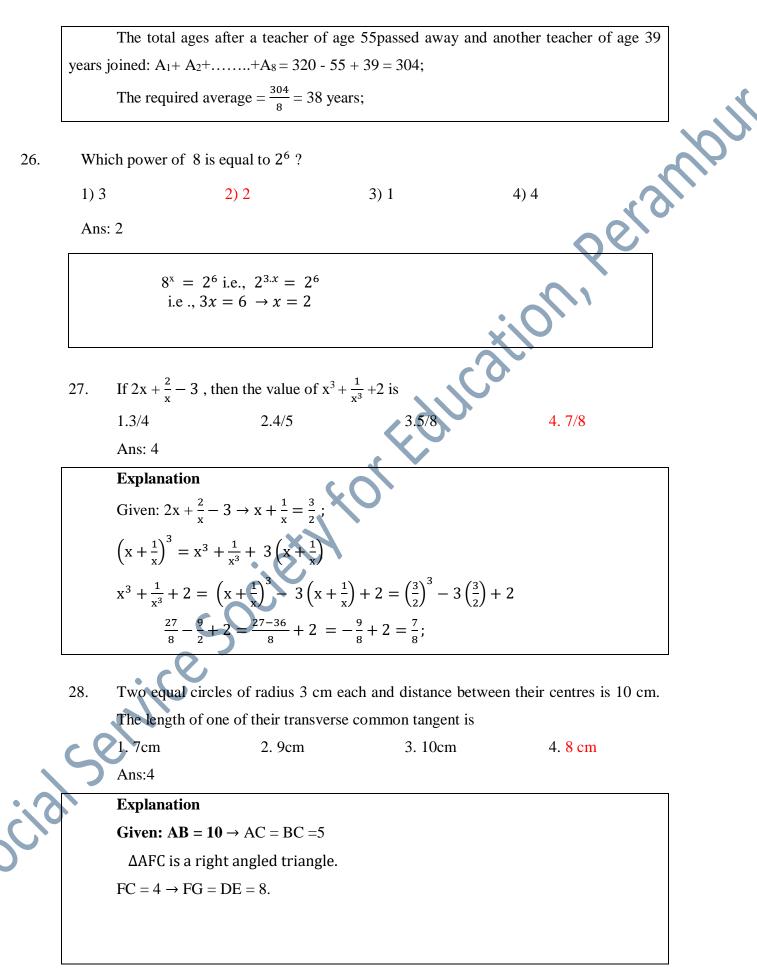
|     | smaller.                                     | The                                   | large                                        | number                      | is       |
|-----|----------------------------------------------|---------------------------------------|----------------------------------------------|-----------------------------|----------|
|     | 1.48                                         | 2. 16                                 | 3.4                                          | 4.12                        |          |
|     | Ans. 2                                       |                                       |                                              |                             |          |
|     | Explanation                                  |                                       |                                              |                             |          |
|     | Let one number                               | be = x and anothe                     | r number= 0.25x;                             |                             |          |
|     | Given: The larg                              | ger number, $x = 0.2$                 | $5x+12 \rightarrow x = \frac{12}{0.75} = 10$ | 5;                          | 5        |
| 18. | A train 500 m                                | long, running at                      | a uniform speed, pa                          | sses a station in 35 s      | . If the |
|     |                                              |                                       |                                              | of the train in kn          |          |
|     | $1.\frac{721}{35}$                           | 2. 74.16                              | 3. 24.76                                     | 4.78.54                     |          |
|     | 35<br>Ans. 2                                 |                                       |                                              |                             |          |
|     | Explanation                                  |                                       | (                                            |                             |          |
|     | _                                            | ravelled $=$ Platform                 | n length 221 m + Trai                        | in length 500 m = $721$     | m:       |
|     |                                              |                                       |                                              | -                           | ,        |
|     | The train's spee                             | $time = \frac{1}{35}$                 | = 20.6  m/sec = 20.6  x                      | $\frac{1}{5} = 74.10$ kmpn. |          |
| 10  | IG (h                                        | 4 D 400                               |                                              |                             |          |
| 19. |                                              | tterest on Ks. 400                    | for 10 years is Rs.                          | 280, then rate of inter     | rest per |
|     | annum is                                     |                                       | 2 71/0/                                      | 1 0 1/ 0/                   |          |
|     | 1. 7%<br>Ans. 1                              | 2. 172%                               | 3. 71/4%                                     | 4.81/2%                     |          |
|     |                                              |                                       |                                              |                             |          |
|     | Explanation                                  | $\sim$                                |                                              |                             |          |
|     | $SI = \frac{PNR}{100};$                      | -                                     |                                              |                             |          |
|     | i.e., $\frac{400 \times 10 \times R}{100} =$ | $= 280 \rightarrow R = 280 \times 10$ | $00/(400 \times 10) = 7\%$ .                 |                             |          |
|     | $\overline{\mathcal{N}}$                     |                                       |                                              |                             |          |
| 20. | If 7 times the se                            | eventh term of an A                   | Arithmetic Progression                       | n (AP) is equal to 11 ti    | imes its |
| つ   | eleventh terr                                | m, then the                           | 18th term o                                  | of the AP will              |          |
|     | 1.1                                          | 2. 0                                  | 3.2                                          | 41                          |          |
|     | Ans:2.                                       |                                       |                                              |                             |          |
|     |                                              |                                       |                                              |                             |          |
|     | Explanation                                  |                                       |                                              |                             |          |
|     | _                                            | n of AP is 'a' and u                  | uniform difference is                        | 'd'.                        |          |

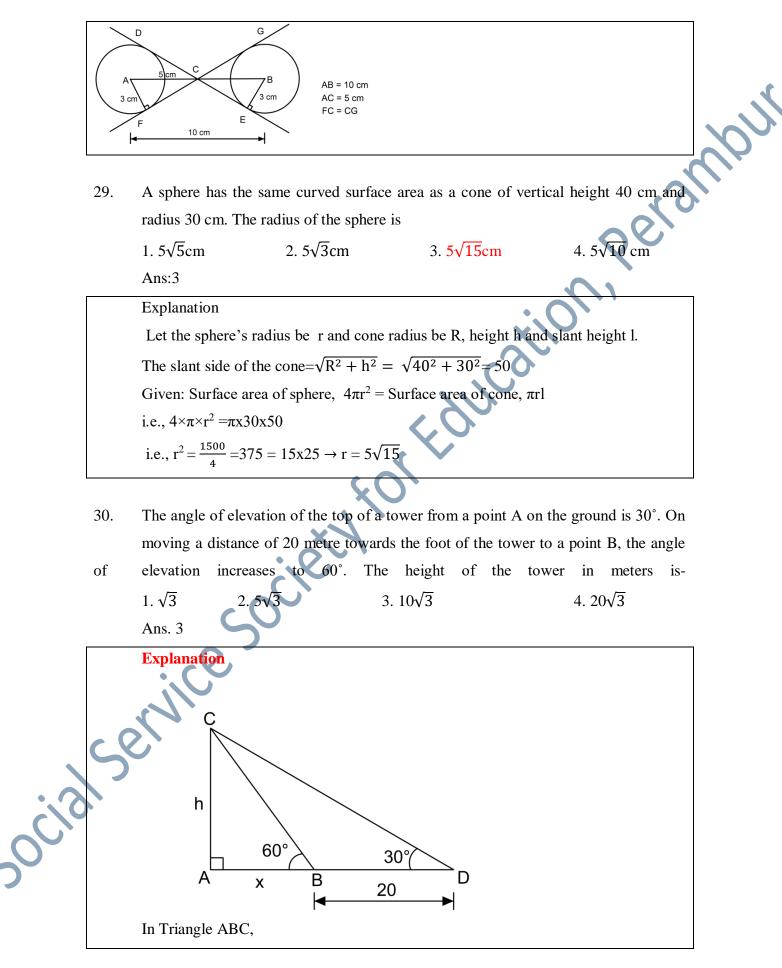
sssfep.com




23. A pair of opposite sides of a cyclic quadrilateral are equal. Which is true?

1. Its diagonal are equal

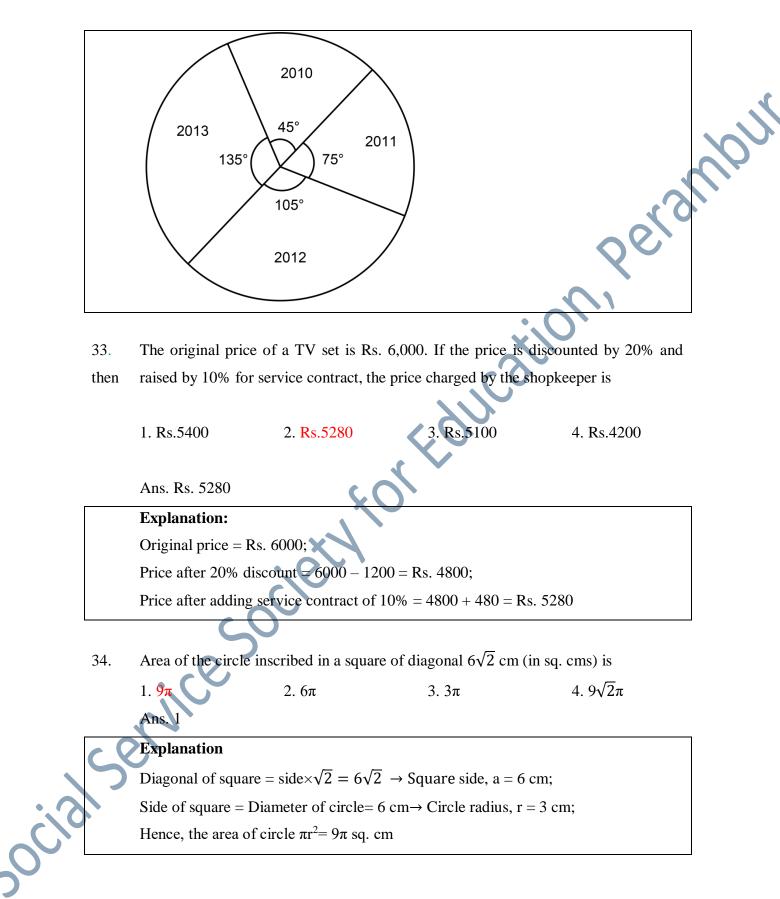

- 2. It is rhombus
- 3. It is a parallelogram

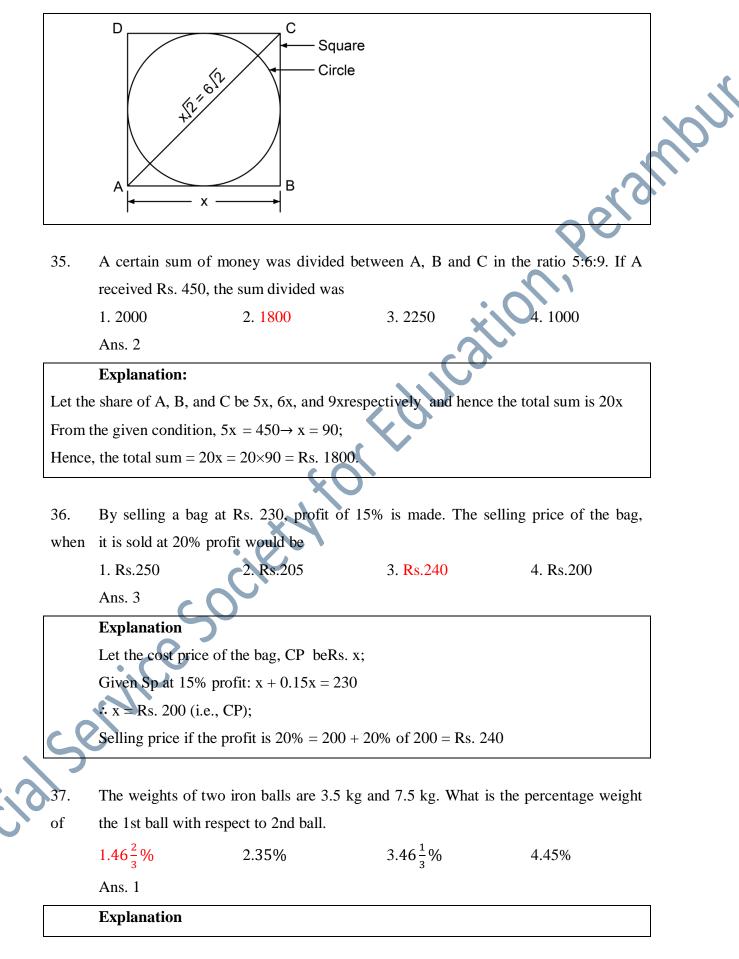

4. No definite relation exists

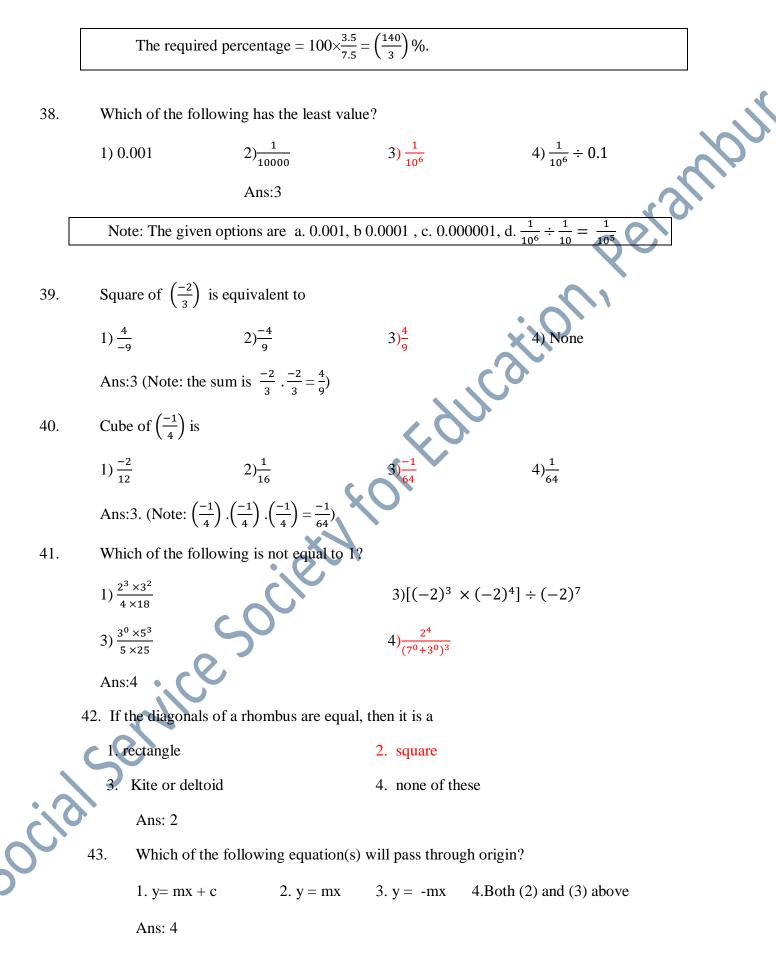
Ans: 1



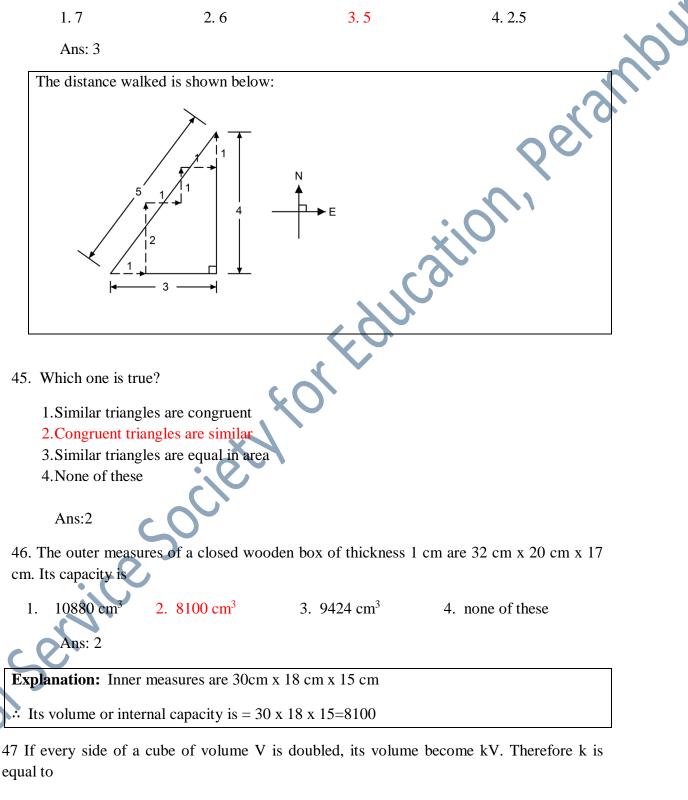
## sssfep.com





In triangle ADC,  $\tan 30 = \frac{1}{\sqrt{3}} = \frac{h}{x+20} \to \sqrt{3} \text{ h} = x + 20 \dots(2)$ From Eqn. (1), put the value of h in Eqn. (2):  $\sqrt{3}$ .  $\sqrt{3}x = 3x = x + 20 \rightarrow x = 10$  m; Hence, from Eqn.(1) the height of tower =  $10\sqrt{3}$ m; 31. A & B together finish a job in 24 days, while A, B & C together can finish the same job in 8 days. C alone will finish the job in 4. 24 days 3. 16days 1. 12days 2. 14days Ans. 1 **Explanation** A + B+ C' s one day work  $=\frac{1}{8}$ A + B's one day work  $=\frac{1}{24}$ : C's one day work  $=\frac{1}{8} - \frac{1}{24} = \frac{3-1}{24}$  $\therefore$ C can finish the work in 12 days Given here is a pie chart of the cost of gold in 2010, 2011, 2012 and 2013. Study the 32. chart and answer the following questions: If the price of gold in 2013 is Rs. 31,500 10 gram, then the price of gold in 2011 per 10 gram is per 2. Rs.17500 3. Rs.18000 1. Rs.17000 . Rs.18500 Ans. 2

## Explanation


The required price of gold in 2011 per 10 gram =  $\left(\frac{75}{135}\right) \times 31500 = \text{Rs.}$  17500.







44. A man at point A walks 1 KM east, then 2 KM north, then 1 KM east, then 1 KM north, then 1 KM east, then 1 KM north to arrive at point B. From point B, what is the shortest distance to point A in KM ?



1. 2 2. 4 3. 8 4. None Ans:3

## **Explanation:** $V = a^3$ $a \rightarrow 2a : V \rightarrow (2a)^3 = 8a^3 = 8V = k.V, : k = 8.$ erami 48. The length of the longest pole that can be kept inside a room 12 m x $3\sqrt{3}$ m x 5 m is 4. $15\sqrt{3}$ m 2. $12\sqrt{3}$ m 3. 14 m 1. 10 m Ans:3 **Explanation** Longest dimension of a room or cube $=\sqrt{l^2 + b^2 + h^2} = \sqrt{12^2 + (3(\sqrt{3}))^2}$ $=\sqrt{144+27+25}=\sqrt{196}=14$ 49. A metal pipe has an external radius of 4 cm and an internal radius of 3 cm. Find the volume of the metal if its length is 10 cm 3. $440 \text{ cm}^3$ 2. 220 cm<sup>3</sup> 4. None 1. $344 \text{ cm}^3$ Ans: 2 **Explanation** Given: R =4 cm, r = 3 cm and length L =10cm Volume, V= $\pi$ (R<sup>2</sup>-r<sup>2</sup>) L= $\pi$ (4<sup>2</sup>-3<sup>2</sup>)× 10 = $\frac{22}{7}$ × 7 × 1 × 10 = 220 $\left(\frac{2}{3}\right)^3$ 50. is equal to $2)\left(\frac{2}{3}\times\frac{5}{7}\right)^{6} \qquad 3)\left(\frac{2}{3}\times\frac{5}{7}\right)^{3} \qquad 4)\left(\frac{2}{3}\times\frac{5}{7}\right)^{9}$ Ans:3 ija