stampu

1. Which one is true?

- 1.Similar triangles are congruent
- 2. Congruent triangles are similar
- 3. Similar triangles are equal in area
- 4. All are correct
 - Ans:2
- 2. The point of concurrency of altitudes of a triangle is called the
 - 1. Incentre2. Circumcentre3. Orthocenter4. CentroidAns : 3
- 3. The locus of a point equidistance from two parallel lines is a
 - 1. A parallel line
- 4. The polygon in which the sum of the interior angles is equal to the sum to the sum of the exterior angles is called a
- 1. quadrilateral 2. pentagon 3. hexagon 4. heptagon

Ans: 1

Explanation. The polygon in which the sum of the interior angles (360°) is equal to the sum of the exterior angles (360°) is called a quadrilateral, e.g., square, rectangle, rhombus, parallelogram and cyclic quadrilateral, kite, etc.

- 5. Two sides of a triangle are 6 cm and 8 cm. The length of the third side is
 - 1.7 cm2. 2 cm3.greater than 2 cm and less than 14 cm4. Above 8 cmAns: 3

Explanation

Properties of a triangle:

In triangle, sum of 2 sides must be greater the third side or the third side shall be less than sum of the other 2 sides; also the 3rd side shall be greater than the difference between these sides'

So, the third > 8 - 6 = 2 and also the third < 8 + 6 = 14.

So, the answer is 2 < third side < 14, i.e., the third side lies between(2 and 14).

5. If a+b+c=0, the value of $a^3 + b^3 + c^3$ is

1. abc 2.3abc 3. $a^2b^2c^2$ 4.None

Ans: 2

7. If $2^{2x-y} = 16$ and $2^{x+y} = 32$ the value xy is 1.1 2. 4 3. 6 4. None Ans:3 Explantion Given: $2^{2x-y} = 2^4$ and $2^{x+y} = 2^5$ \therefore 2x-y = 4 and x +y = 5 $\therefore 3x = 9$ x = 3 and y=2 $\therefore xy = 6$

2. 50 m^3

8. A tank 10m x 5m x 6m is full of water. How much water must be taken out to reduce the water level by 1 m?

3. 60 m^3

1. 30 m^3

Ans:2 **Explanation** Volume of full tank, $V = lbh = 10x5x6 = 300m^3$ Volume of water of 1 m depth = $10 \times 5 \times 1 = 50 \text{m}^3$ OR Volume of water left after draining water by 1m (now the water height becomes 5 m) $= 300 \times \frac{5}{6}$ m³ = 250m³ \therefore Volume of water to be reduced = 300 - 250 = 50

9. Which one of the following is a rational number 1. Euilor number 2. π 3. 2.1387269

4. none of these

4. 100 m³

Ans: 4. (Euler number = 2.718

General Formula of Euler's Number

e is mathematically represented and defined by the following equation:

$$e = \lim_{n o \infty} \left(1 + rac{1}{n}
ight)^n$$

https://www.cuemath.com/numbers/eulers-number/

10.. The dimensions of a brick are 24cm x 12 cm x 8 cm. How many bricks will be required build a wall 24m x 8m x 6m if 20% of the wall is filled with cement mortar? to

40000 2. 47000 3. 51000 4. 55000

Ans: 1

Explanation

From the given condition, bricks make up 80% of volume of the wall.

sssfep.com

1.n 2. 2n 3. 2^n 4. n^n Ans: 3 12. Which of the following is not possible? 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2}$. $d_1 \times d_2$ 2016 = 65 x h,(1) 2016 = $\frac{1}{2}$. $d_1 \times d_2$ There are two equations and 3 unknowns (i.e., h, d_1 and d_2). Hence, the diagonals cannot	1.n 2. 2n 3. 2^{n} 4. n^{n} Ans: 3 12. Which of the following is not possible? 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
Ans: 3 12. Which of the following is not possible? 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2}, d \propto d_2$ 2016 = 65 x h, (1) 2016 $= \frac{1}{2}, d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	Ans: 3 12. Which of the following is not possible? 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 90^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
12. Which of the following is not possible? 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2} \cdot d_1 \times d_2$ $2016 = 65 x h \dots (1)$ $2016 = \frac{1}{2} \cdot d_1 \times d_2$ $2016 = \frac{1}{2} \cdot d_1 \times d_2$ There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	12. Which of the following is not possible? 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
12. Which of the following is not possible: 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, A = ah = $\frac{1}{2}$. $d_1 \times d_2$ 2016 = 65 x h(1) 2016 = $\frac{1}{2}$, $d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	12. Which of the following is not possible: 1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
1. $\sin \theta = 0, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2}$. $d_1 \times d_2$ 2016 = 65 x h(1) 2016 $= \frac{1}{2}$. $d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d_1 and d_2). Hence, the diagonals cannot	1. $\sin \theta = 1, \cos \theta = 0$ 2. $\sin \theta = 0, \cos \theta = 1$ 3. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
3. $\sin \theta = 1/\sqrt{2}$, $\cos \theta = 1/\sqrt{2}$ 4. $\sin \theta = 1$, $\cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2}$. $d_1 \times d_2$ 2016 = 65 x h(1) 2016 $= \frac{1}{2}$. $d_1 \times d_2$ There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	 3. sin θ = 1/√2, cosθ = 1/√2 4. sin θ = 1, cos θ =0.5 Ans: 4 Explanation Option 1 is possible if θ = 90° Option 2 is possible if θ = 0° Option 3 is possible if θ = 45° Option 4 is not compatible 13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63 cm, 64 cm 2. 61 cm, 68 cm 3. 63 cm, 71 cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2}$. $d_1 \times d_2$ 2016 = 65 x h(1) 2016 = $\frac{1}{2}$. $d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d_1 and d_2). Hence, the diagonals cannot	4. $\sin \theta = 1, \cos \theta = 0.5$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, A = ah = $\frac{1}{2}$. d ₁ × d ₂ 2016 = 65 x h(1) 2016 = $\frac{1}{2}$. d ₁ × d ₂ (2) There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2}$. $d_1 \times d_2$ 2016 = 65 x h(1) 2016 = $\frac{1}{2}$. $d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d_1 and d_2). Hence, the diagonals cannot	Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm14. none of theseAns: 1 (derived from answer)Explanation Option 1 Area, $A = ah = \frac{1}{2} \cdot d_1 \times d_2$ 2016 = 65 x h(1) 2016 = $\frac{1}{2} \cdot d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d1 and d2). Hence, the diagonals cannot	Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm1. 63cm, 64cm2. 61cm, 68cm3. 63cm, 71cm4. none of theseAns: 1 (derived from answer)	
Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, A = ah = $\frac{1}{2}$. d ₁ × d ₂ 2016 = 65 x h(1) 2016 = $\frac{1}{2}$. d ₁ × d ₂ (2) There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer)	
Option 2 is possible if $\theta = 45^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2} \cdot d_1 \times d_2$ 2016 = 65 x h(1) 2016 = $\frac{1}{2} \cdot d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	Option 2 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm1. 63cm, 64cm2. 61cm, 68cm3. 63cm, 71cm4. none of theseAns: 1 (derived from answer)	
Option 4 is not compatible13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are1. 63cm, 64cm2. 61cm, 68cm3. 63cm, 71cm4. none of theseAns: 1 (derived from answer)ExplanationOption 1Area, A = ah = $\frac{1}{2}$. d ₁ × d ₂ 2016 = 65 x h(1)2016 = $\frac{1}{2}$. d ₁ × d ₂ Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= 2">Colspan= 2">Colspan= 2">Colspan= 2">Colspan= 2">Colspan= 2">Colspan= 2"Detect from answer)Detect from answer) <td colsp<="" td=""><td>Option 4 is not compatible 13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are 1.63cm, 64cm 2.61cm, 68cm 3.63cm, 71cm 4. none of these Ans: 1 (derived from answer)</td></td>	<td>Option 4 is not compatible 13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are 1.63cm, 64cm 2.61cm, 68cm 3.63cm, 71cm 4. none of these Ans: 1 (derived from answer)</td>	Option 4 is not compatible 13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1.63cm, 64cm 2.61cm, 68cm 3.63cm, 71cm 4. none of these Ans: 1 (derived from answer)
13. The area of a rhombus is 2016 cm ² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) Explanation Option 1 Area, $A = ah = \frac{1}{2} \cdot d_1 \times d_2$ 2016 = 65 x h(1) 2016 = $\frac{1}{2} \cdot d_1 \times d_2$ (2) There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	 13. The area of a rhombus is 2016 cm² and its side is 65 cm. Its diagonals are 1. 63cm, 64cm 2. 61cm, 68cm 3. 63cm, 71cm 4. none of these Ans: 1 (derived from answer) 	
ExplanationOption 1Area, $A = ah = \frac{1}{2} \cdot d_1 \times d_2$ $2016 = 65 \text{ x h } \dots \dots (1)$ $2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots \dots (2)$ There are two equations and 3 unknowns (i.e., h, d1 and d2). Hence, the diagonals cannot		
Option 1Area, $A = ah = \frac{1}{2} \cdot d_1 \times d_2$ $2016 = 65 \text{ x h } \dots \dots (1)$ $2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots \dots (2)$ There are two equations and 3 unknowns (i.e., h, d1 and d2). Hence, the diagonals cannot	Explanation	
Area, $A = ah = \frac{1}{2} \cdot d_1 \times d_2$ $2016 = 65 \text{ x h } \dots \dots (1)$ $2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots \dots (2)$ There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	Option 1	
$2016 = 65 \text{ x h} \dots \dots (1)$ $2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots \dots (2)$ There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	Area $A = ab = \frac{1}{2} da da$	
$2016 = 65 \text{ x h } \dots \dots (1)$ $2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots \dots (2)$ There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$	
$2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots \dots (2)$ There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot	$2016 = 65 \text{ x h} \dots $	
There are two equations and 3 unknowns (i.e., h, d_1 and d_2). Hence, the diagonals cannot	$2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots \dots (2)$	
	There are two equations and 3 unknowns (i.e., h, d_1 and d_2). Hence, the diagonals cannot	
be determined from mathematical principles.	be determined from mathematical principles.	
Option 2	Option 2	
be determined from mathematical principles.	$2016 = \frac{1}{2} \cdot d_1 \times d_2 \dots (2)$ There are two equations and 3 unknowns (i.e., h, d ₁ and d ₂). Hence, the diagonals cannot be determined from mathematical principles.	
be determined nom mathematical principles.	of the a	
Option 2		
Option 2		

sssfep.com

Ans:1

Ans:4

24. In the first quadrant, which one of the following is true?

- 1. $\cos\theta$ increases when θ increases.
- 2. $\cos\theta$ decreases when θ increases

3. $\cos\theta$ remains constant

4. None

Ans: 2

- 25. In the first quadrant, which one of the following is true?
- 1. $\sin \theta$ increases when θ increases
- 2. $\sin \theta$ decreases when θ increases
- 3. $\sin \theta$ remains constant
 - None

Ans: 1

Explanation

 $\sin \theta$ increases from 0 to 1. Refer to a Figure in the sum Qn. 25.

26. The lengths of the diagonals of rhombus are 8 cm and 6 cm. The height of the rhombus is

1. 4.5cm 2. 4.9 cm 3. 4.8 cm 4. 4.9 cm

- $\therefore A = ah = 5h = 24 \rightarrow h = 4.8$
- 27. The height of an equilateral triangle whose side is $20\sqrt{3}$ cm is
- 1. 20cm
 2. 30cm
 3. 32.5cm
 4.None

Ans: 2

Explana	ation	
$h - \frac{a\sqrt{3}}{a\sqrt{3}}$	$20\sqrt{3}\sqrt{3}$	$-\frac{60}{2}-30$
11 - 2	2	$-\frac{1}{2}-30$

28. The solid cylinder is cut by an oblique plane as shown. The cut surface will assume the shape of:

3) a parabola

4) none of these

erd

Ans: a. Refer to conic sections below.

2) a

Box:Conic sections

1) an ellipse

circle

 1. 27.5 cm
 2. 30cm
 3. 32.5cm
 4. 40

Ans: 4

Ex	xplanation:]
a =	$=\frac{2h}{\sqrt{3}}=\frac{2\times20\sqrt{3}}{\sqrt{3}}=40$				
2. The ratio	of the area of a squ	are to that of the sq	uare drawn on its d	liagonal is	5
. 1:1.5	2. 1:2	3. 1:3	4. None		~~~

- 32. The ratio of the area of a square to that of the square drawn on its diagonal is
- 1. 1:1.5 2. 1:2 3. 1:3 4. None

	Ans:2
	Explanation
	Let side be a.
	$\therefore \text{ Diagonal } d = a\sqrt{2}$
	Let, the area of square of side a, $A_1 = a^2$
	Area of square with diagonal as its side(d = $a\sqrt{2}$), A ₂ = $(a\sqrt{2})^2 = 2a^2$
	$A_1: A_2 = 1:2$
	X
33	If one edge of a cuboid is increased by 50% and one decreased by 50%, its volume will
1.	not change 2. increased
3.	decreased 4. None
	Ans:3
	Explanation
	A cuboid has 3 sides and its sides are 1, b and h
	For the given conditions, sides of cuboid become 1.5l, 0.5b, h
	Original volume V = lbh
	\therefore New volume V= 0.75lbh (i.e., the new volume is reduced from the original value by 25%)
34	. If every side of a cuboid of surface area K is doubled, the surface area of the new cuboid will be
	1. 2K 2. 4K 3. K^2 4. None
	Ans: 2 (Volume will increase by 8 times)
	Explanation
	Let the sides be l, b and h. The sides are doubled so that $1 \rightarrow 2l$, $b \rightarrow 2b$ and $h \rightarrow 2h$
	The original surface area, S =(lb+bh+lh) =K
	Revised surface area = $4(lb+bh+lh) = 4K$
0	36 The mean/average of the first n natural numbers is
1	$\frac{n}{2}$ 2. $\frac{n+1}{2}$ 3. $\frac{n}{2}+1$ 4. $\frac{n^2+n+1}{2}$
	Z Z Z Z Z Z
	Ans: 2.
	Explanation
	The sum of first n natural numbers $=\frac{n(n+1)}{2}$
	2

 \therefore Their average = $\frac{n(n+1)}{2} \div n = \frac{(n+1)}{2}$ 2 ampul 35. The mean/average of the squares of the first n natural numbers is 3. $\frac{(n+1)(2n+1)}{6}$ 2. $\frac{n^4+1}{n}$ 4. $\frac{n(n+1)(n+2)}{n}$ 1. n + 1Ans: 3. Explanation The sum of squares of the first n natural numbers = $\frac{n(n+1)(n+2)}{6}$ $\therefore \text{ Their average} = \frac{n(n+1)(n+2)}{6} \div n = \frac{(n+1)(n+2)}{6}$ 35. The mean/average of the cubes of the first n natural number is 1. $\frac{n(n+1)^2}{4}$ 3. $\frac{n(n+1)(n+2)}{8}$ 2. n^2 None Ans: 1. Explanation The sum of cubes of the first n natural numbers = $\frac{[n(n+1)]^2}{n}$: Their average $=\frac{[n(n+1)]^2}{4} \div n = \frac{n(n+1)^2}{4}$ 37. Which of the following is not possible? a. $\sin \theta = 1, \cos \theta = 0$ b. $\sin \theta = 0$, $\cos \theta = 1$ c. $\sin \theta = 1/\sqrt{2}, \cos \theta = 1/2$ d. $\sin \theta = 1, \cos \theta = \frac{1}{2}$ Ans: 4 Explanation Option 1 is possible if $\theta = 90^{\circ}$ Option 2 is possible if $\theta = 0^{\circ}$ Option 3 is possible if $\theta = 45^{\circ}$ Option 4 is not compatible 38. The circumference of a circle is 200 cm. The side of square inscribed in the circle is 2. $\frac{50\sqrt{2}}{\pi}$ 3. $\frac{50}{\sqrt{2}}\sqrt{\pi}$ cm 4. None Ans: 1 Explanation Circumference = $\pi d = 2\pi r$ Given: $\pi d = 200 \rightarrow d = 200/\pi$

sssfep.com

	For a sqare inscribed inside a circle, the diagonal d_s is equal to the diameter of the circle, d.
	and hance the side of the square a_{ij} is $d/\sqrt{2}$
	and hence the side of the square a_1 is $u/\sqrt{2}$
	Square side, $a = \frac{200/\pi}{\sqrt{2}} = \frac{200}{\sqrt{2}} = \frac{200 \times \sqrt{2}}{\sqrt{2}} = \frac{100 \times \sqrt{2}}{\sqrt{2}}$
	$\sqrt{2}$ $\pi \sqrt{2}$ $\pi \sqrt{2} \sqrt{2}$ π
20	The sides of three faces of a suboid are in the ratio 1:2:3. If its volume is 6000 cm^3 the
59.	Ine sides of three faces of a cubold are in the fatto 1.2.5. If its volume is 0000 cm, the
	1. /.5 cm 2. 10 cm 3. 15 cm 4. 1/.5 cm
Г	Ans: 2
	Explantion
	Let the sides be l, b and h. \therefore Volume of cuboid, V =lbh
	For the given sides, $V = a \times 2a \times 3a = 6a^3 = 6000$
	$6a^3 = 6000 \rightarrow a^3 = 1000 \therefore a = 10$
I_	
40.	The surface area of a cube is 150 cm^2 . Its volume is
1.	100 cm ³ 2. 125 cm ³ 3. 150 cm ³ 4. 200 cm ³
	Ans: 2
	Explantion
	$S = 6a^2$ and $V = a^3$
	Given: $6a^2 = 150$
	$\therefore a = 5 \text{ cm}$
	$\therefore V = 125 \text{ cm}^3$
L	
41	The slant height of a right circular cone is 10 m and its height 8 m. Find the area of its
41.	The stant height of a fight circular cone is 10 in and its height 8 in. Find the area of its
1	
1.	$60 \pi \text{ m}^2$ 2. $50\pi \text{ m}^2$ 3, $40\pi \text{ m}^2$ 4. $30\pi \text{ m}^2$
г	Ans: 1
	Explanation
	For a right circular cone, $\ell = \sqrt{r^2 + h^2}$ and CSA = $\pi r \ell$
	Given: $\ell = 10m$, $h = 8m \therefore r = 6m$ (Pythogorean triples)
	$CSA = \pi r \ell = \pi x 6 x 10 = 60\pi$
	42 If sin $x = \cos x$, $x + y$ is equal to
	$+2.11 \sin x - \cos y, x + y \cos cquar to$ 1 200 2 450 2 600 4 000
5	$1. 50^{\circ} \qquad 2. 45^{\circ} \qquad 5. 60^{\circ} \qquad 4. 90^{\circ}$
)	Alls.4.

43. In the first quadrant, which one of the following is true?

47. The height and radius of a cone are doubled. The volume of the cone becomes

1.	2 times 2, 4 times 3. 8 times 4. None
r	Ans: 3
	Explantion
	Volume of cone V = $\frac{1}{3}\pi r^2 h$
	Given $r \rightarrow 2r$, $h \rightarrow 2h$
	: Volume $\rightarrow \frac{1}{3}\pi(2r)^2$. (2h) = 8 $\frac{1}{3}\pi r^2$ h = 8V
	48 A hallow cone of height 24 cm and radius 7 cm is to be made. The total area of
	the sheet required is
1.	607 cm^2 2. 704 cm^2 3. 804 cm^2 4. None
Γ	Ans:2
	Explanation
	Given $r = 7$; $h = 24$; \therefore Slant side $= \ell = \sqrt{r^2 + h^2} \rightarrow \ell = 25$;
	$1 \text{ otal surface area, } 1 \text{ SA} = \pi r l + \pi r^2$
	$=22/1 \times 1 \times 25 + 22/1 \times 1 \times 1$ $=550 + 154 - 704 \text{ cm}^2$
l	- 550 + 154 - 7040m
49.	Simplify:
	a. 101 x 99
	Ans. $(100 + 1)(100 - 1) = 10000 - 1 = 99999$
	b. $128^2 - 22^2$
	Ans. $(128 + 22) (128 - 22) = 150 \times 106 = 15900$
20	
50.	Factorize each of the following:
	(a)3x + 9
	Ans. 3 (x+3)
	(b) $5x - 10$
	Ans. 5(x-2)

social service society for Education, Perambus