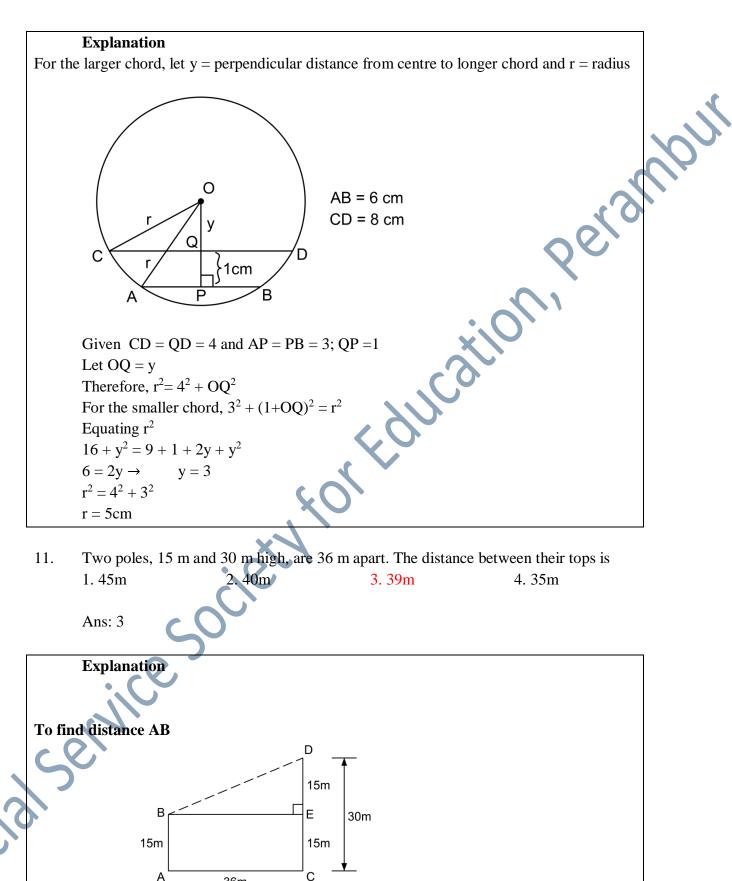

1. A ladder 65 m long is leaning against the wall. Its lower end is 25 m away from the wall. How much further away will it be if the upper end is moved down 8 m? 2. 52 m 3. 14 m 1.60 m

	Ans: 1
	Explanation
	The given sum is $\frac{x+1}{x} \times \frac{x}{y} = \frac{x+1}{y}$
5.	Factor 176 into prime factors. 1. $(1)(4)(11)$ 2. $(2)(2)(2)(2)(11)$ 3. $(1)(2)(11)$ 4. $(1)(2)(2)(11)$ Ans: 2
	Explanation
	Given number $176 = 16 \times 11 = 2^4 \times 11 \rightarrow (2)(2)(2)(2)(11)$
	he polygon in which the sum of the interior angles is equal to the sum to the sum of the sterior angles is called a
1.	. quadrilateral 2. pentagon 3. hexagon 4. heptagon
	Ans: 1
of the	anation. The polygon in which the sum of the interior angles (360°) is equal to the sum e exterior angles (360°) is called a quadrilateral, e.g., square, rectangle, rhombus
parall	lelogram and cyclic quadrilateral, kite, etc.
7.	Arrange the following fractions in increasing order:-2/5, -1/2, 1/5. 12/5,-1/2, 1/5 3. 1/5,-2/5,-1/2 4. 1/5,-1/2,-2/5
	Ans:2
	Explanation Given fractions are -0.4, -0.5, and 0.2
	: Increasing order: -0.5, -0.4, $0.2 \rightarrow -1/2, -2/5, 1/5$
8.	The sum of all interior angles of a pentagon is
0.	1. 900° 2. 180° 3. 360° 4. 540° Ans: 4
5	Explanation (i.e., $5 \times 108 = 540$)
9.	The inner and outer circumferences of a circular ring are 22 cm and 44 cm respectively. The thickness (in cm) of the ring is
	1. 3.5 2. 3 3. 11 4. 22 Ans : 1 4. 22
	Explanation
	Let d and D be inner, outer diameters and t thickness (D-d)/2
	$\pi D = 44 \therefore D = \frac{44}{\pi}$

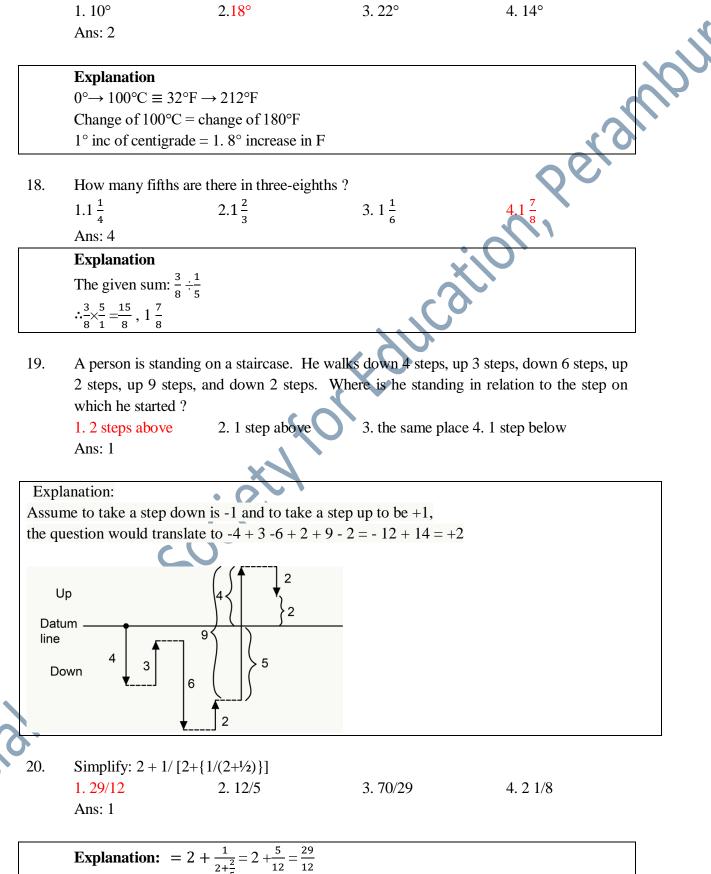
$$\frac{\pi d - 22: x d = \frac{22}{\pi}}{t = \frac{1}{2}(0 - d) = \frac{1}{2}\left(\frac{24}{\pi} - \frac{22}{\pi}\right)} = \frac{4 + 22}{2 \cdot \frac{22}{\pi}} = 3.5$$



Two parallel chords in a circle are 6 cm and 8 cm long and 1 cm a part. The radius of the circle is:

 1. 8 cm
 2. 7 cm
 3. 6 cm
 4. 5 cm

 Ans: 4
 3. 6 cm
 4. 5 cm

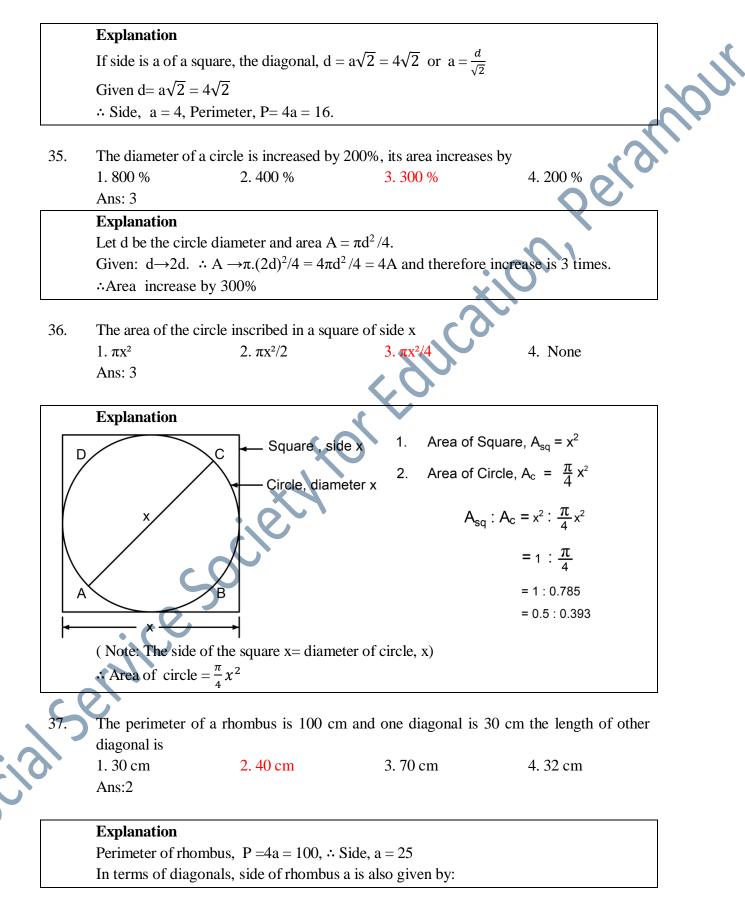

36m

 $x = \sqrt{(36^2 + 15^2)} = 39m$

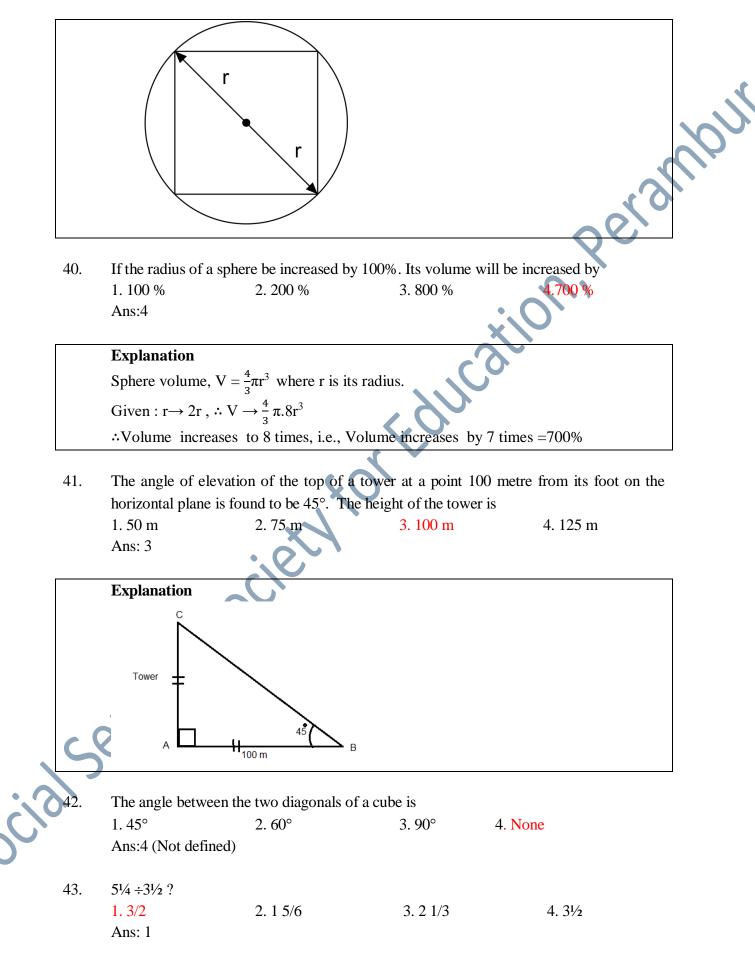
А

12.	Which is the closest approximation to the product: $0.3333 \ge 0.25 \ge 0.499 \ge 0.125 \ge 24.0$? $1.1/8$ $2.3/4$ $3.3/8$ $4.2/5$
	Ans: 1
	Explanation : The given sum: $\approx \frac{1}{3} \times \frac{1}{4} \times \frac{1}{2} \times \frac{1}{8} \times 24 = \frac{1}{8} = 0.125$
13.	$n! = n(n-1) (n-2) \dots 1 (2) (1)$ what is $10!2!/(8!3!)$?
	1.30 2.100 3.90 4.60
	Ans: 1
	Explanation: The given sum: $\frac{10! 2!}{8! 3!} = \frac{10 \times 9 \times 8! \times 2!}{8! \times 3 \times 2!} = \frac{10 \times 9}{3} = 30$
14.	A circle with an area equal to an integer might have which of the following as the square of its radius ?
	1. π 2. $\frac{1}{\pi}$ 3. 2π 4. $\pi/2$
	Ans: 2. (Note: $r = \frac{1}{\sqrt{\pi}}$ or $r = \sqrt{\frac{a}{\pi}}$ where a is a positive integer)
15.	Which is the least of the following numbers ?
	1. $1/\sqrt{3}$ 2. $\sqrt{3}/3$ 3. 1/3 4. $\frac{1}{3\sqrt{3}}$
	Ans: 4
	Explanation
	The given numbers are: $\frac{1}{\sqrt{3}}$, $\frac{\sqrt{3}}{\sqrt{3}x\sqrt{3}}$, $\frac{1}{\sqrt{3}\times\sqrt{3}}$, $\frac{1}{\sqrt{3}\times\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}\times\sqrt{3}}$, $\frac{1}{\sqrt{3}\times\sqrt{3}}$
	The least number is $\frac{1}{\sqrt{3} \times \sqrt{3} \times \sqrt{3}}$
16.	If $(0.0001)^p = (0.1)^r$, then p =
	1. $\frac{r}{4}$ 2. r^2-1 3. r^2+1 4. $r-3$
0	Ans: 1
	Explanation: The given sum: $10^{-4p} = 10^{-r}$
)	$\therefore p = \frac{r}{4}$

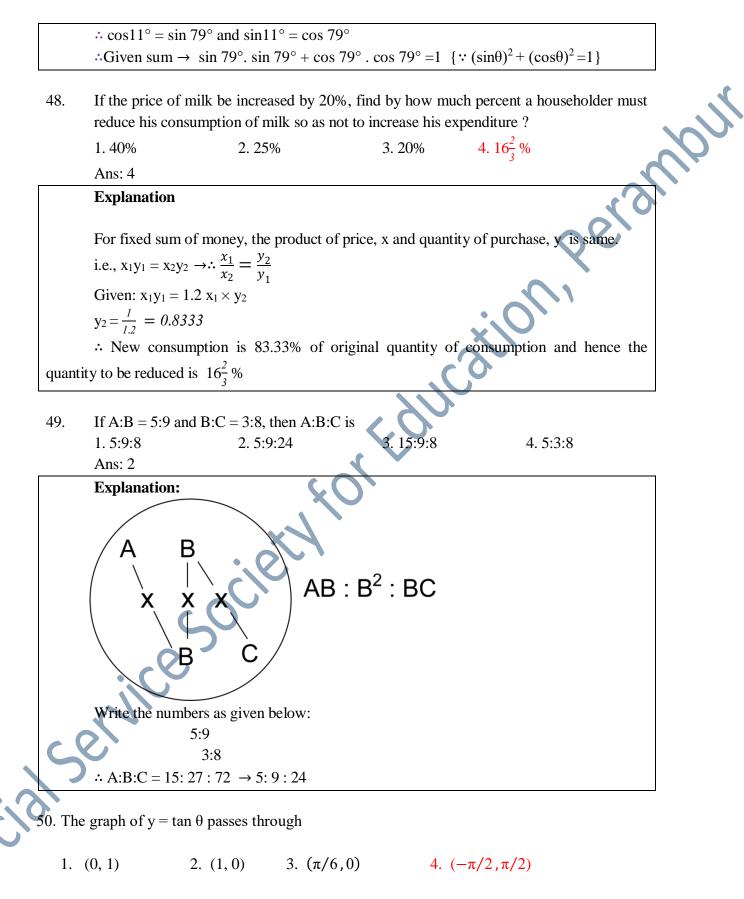
17. An increase of 10 degrees on the Centigrade scale produces a corresponding increase on the Fahrenheit scale of
1 108 2 188 2 208 4 148

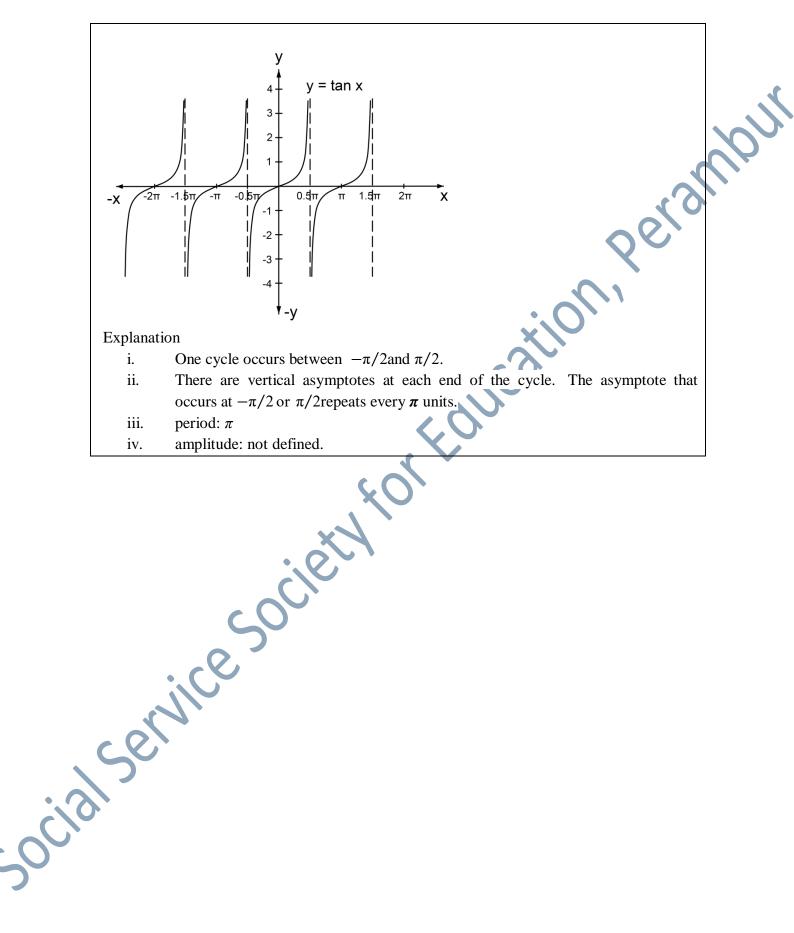

21.	What is the area of a square that has a diagonal of length $\sqrt{10}$ units?	
	1.5 2. 10 3. 20 4. 50	
	Ans: 1	
	Explanation	
	Square area, $A = \frac{d^2}{2}$	
	-	
	$=\frac{\sqrt{10}\times\sqrt{10}}{2}=\frac{10}{2}=5$	0
22.	How many different three-person committees can be formed from six people?	
	1. 2 2. 18 3. 20 4. 36	
	Ans: 3	
	Explanation	
	Use the combination formula: $nC_r = \frac{n!}{r!(n-r)!}$	
	$=\frac{6!}{3!(6-3)!}=\frac{720}{6(6)}=\frac{720}{36}=20$	
23.	1/4 of 3/5 is what percent of 3/4 ?	
23.	1. 15% 2. 20% 3. 33 1/3% 4. 80%	
	Ans: 2	
	Explanation	
	Let the number of percentage be x.	
	The given sum: $\frac{1}{4} \times \frac{3}{5} = \frac{3}{20} = \frac{15}{100} = \frac{3}{4} \cdot \frac{X}{100} \to X = 20.$	
	i.e., 20% of $\frac{3}{4} = \frac{20}{x^3} = \frac{15}{x^3}$	
	100 4 100	
24.	If $x = 3$ and $(x-y)^2 = 4$, then y could be	
	15 21 3. 9 4. 5	
	Ans: 4	
	Explanation	
	Given sum $\rightarrow (3 - y)^2 = 4$	
	$3 - y = \pm 2$ y = 2 - 1 (or) $2 + 2 = 5$	
	\therefore y = 3-2 =1 (or) 3+2 = 5	
25.	All of the following are prime numbers except	
25.	1. 13 2. 17 3. 51 4. 79	
	Ans: 3	
	Explanation	

	$\because 51 = 3 \times 17$
26.	0.250/0.333 divided by 0.125/0.167 is most nearly
	1. 10 2. 5 3. 1 4. 0.667
	Ans:3
	Explanation
	=
	$\frac{0.25}{0.333} \times \frac{0.167}{0.125} = \frac{0.25}{0.125} \times \frac{0.167}{0.333} \approx 2 \times \frac{1}{2} \approx 1$
27.	$(4+\sqrt{5}) (4-\sqrt{5})$ is equal to
	11 2. 0 3. 11 4. 21
	Ans: 3
	Explanation
	The given sum is of the form: $(a+b)(a-b) = a^2 - b^2$.
	$(4+\sqrt{5}) (4-\sqrt{5}) \to 16-5 = 11$
L	
28.	An oil tank is 5/8 full. When 6 litres of oil are removed, the tank is 1/4 full. What is the
	total capacity of the tank in litres ?
	1. 14 2. 16 3. 18 4. 20
	Ans:2
	Explanation: Let the tank volume = x
	Given condition: $\frac{x \times 5}{8} - 6 = \frac{1}{4}x$
	$\therefore \frac{5x}{8} - \frac{x}{4} = 6$
	i.e., $\frac{5x-2x}{8} = 6;$ $\therefore x = \frac{48}{3} = 16$
	60
29.	If the length of a square is doubled, then;
	1. The perimeter and area are both doubled
	2. The perimeter and the area are each multiplied by 4
	3. The area is multiplied by 4 and the perimeter is doubled
	4. The perimeter is multiplied by 4 and the area is doubled
C	Ans: 3
	Explanation
	(i) Side $x \rightarrow 2x$
	(ii) $P = 4x \rightarrow 8x$, $\therefore P$ increases to 2 times
	(iii) $A = x^2 \rightarrow (2x)^2 = 4x^2$, $\therefore A$ increases to 4 times
	From the above, area increases by 4 times and perimeter increases 2 times.
	From the above, area increases by 4 times and permitter increases 2 times.


30. Of the following, which cannot be the ratio of the lengths of the sides of a triangle?

	Ans: 2					
	Explanation					
Let t	he sides of the triar	ngle be a, b and c. In	n a triangle, sum	of any 2 sides shall be g	reater	
than		a + b > c, b + c > a and				
	The above	e condition is met by	all options exce	ept, option 2.		
					5	
31.	If two sides of a t	riangle are of length	8 and 14, the thir	d side may be of length :		
	1. 25 2.	22 3.6	4.5		(° ()	
	Ans: 1			~ ~ ?		
	Explanation					
	For any triangle of	of sides a, b and c, the	e following condi	tions are to be satisfied:		
	a + b > c, b + c >	a, c + a > b				
				· () ·		
				XV		
32.	Is a discount serie	es of 40%, 40% and 2	25% possible ?			
	1. Possible			C.		
	2. Not Possible			N .		
	3. May or may no	ot be				
	4. Possible, subject to some other conditions.					
	Ans: 1					
	Explanation	C	$\overline{\mathbf{O}}$			
	Let 100 be value	on which successive	discounts are giv	ven:		
	1^{st} 2^{nd}	3^{rd}	S	Sequence of discounts		
	40% 40%	25%		Sequence of rate of discount		
	40 24 (i.e., 40	0% of 60) 9 (i.e., 1	25% of 36) I	Discounted amount (sequenti	ially)	
	60 36	27	Balance am	ount after successive discour	nts.	
	Total discount =1	00-27 = 63 = 63%.				
	Hence, successive	e discounts as per the	given sum is po	ssible.		
		-				
33.	The length of eac	h side of an equilate	al triangle is 2 c	m the length of its altitude (i	n cm)	
	is					
	$1.\sqrt{3}$	2. $2\sqrt{3}$	3. 1/2	4. 1		
0	Ans: 1					
	Explanation					
	\therefore h = $\frac{a\sqrt{3}}{2}$					
-	-					
	$\therefore h = \frac{2 \times \sqrt{3}}{2} = \sqrt{3}.$					
	2					
24	The diagonal of -	$1 \sqrt{2}$	a nonimator (in -	m) ia		
34.	-	square is $4\sqrt{2}$ cm, it	-			
	1. 16√ 2	2. $8\sqrt{2}$	3.16	4. 12		


Ans: 3


$$a = \sqrt{\frac{d_2}{2}^2} + \frac{d_3}{2}^2; \quad \hat{x} + \frac{d_3}{2} + \frac{d_3}{2}^2 + \frac{d_3}{2}^2 + \frac{d_3}{2}^2 + \frac{d_2}{2}^2 + \frac{d_3}{2}^2 = 30^2 + d_2^2$$

i.e., 2500 900 = d_2^2
:.1600 = d_2^2 , $\therefore d_2 = 40$.
Box. Details of rhombus.
$$\int \frac{1}{\sqrt{\frac{d_3}{d_2}} + \frac{d_3}{d_2} - \frac{d_3}{d_1}}{\frac{d_3}{d_2} + \frac{d_3}{d_2}} = \frac{1}{\sqrt{\frac{d_3}{2}} + \frac{d_3}{d_2}}{\frac{d_3}{d_2} + \frac{d_3}{d_2}}$$

Area, A = a) = $\frac{\pi}{\sqrt{\frac{d_3}{d_2}} + \frac{d_3}{d_2}}{\frac{d_3}{d_2} + \frac{d_3}{d_2}}$
38. The diagonals of a rhombus are 24 cm and 10 cm. Its perimeter (in cm) is
1. 68 2. 60 3. 52 4. None
Ans: 3
Explanation
 \therefore In terms of diagonals, side of rhombus, $a = \sqrt{\frac{d_3}{2}^2 + \frac{d_3}{2}^2} = \sqrt{12^2 + 5^2} = 13$
 \therefore P = 4a = 52
39. The area of a square inscribed in a circle of radius r is
1. r^2 2. 2r^2 3. \pi r^2 4. None of the above.
Ans: 2

Ans: 3 Explanation The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2} \times \frac{(\sqrt{2}-1)^2}{2-1}$	3. 0.857 $\frac{1}{2} = \frac{1}{2} (0.414)^{2}$ $= \frac{1}{2} = \frac{2 - 2\sqrt{2} + 1}{1}$	\sim
44. Find the value of $\frac{1}{2}x \frac{(\sqrt{2}-1)}{(\sqrt{2}+1)}$. 1. 0.500 2. 0.0916 Ans: 3 Explanation The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} x \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2}x \frac{(\sqrt{2}-1)^2}{2-1}$	$\frac{1}{2} = \frac{1}{2}(0.414)^2$	$r = \frac{0.1714}{2} = 0.0857$
1. 0.500 Ans: 3 Explanation The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2} \times \frac{(\sqrt{2}-1)^2}{2-1}$	$\frac{1}{2} = \frac{1}{2}(0.414)^2$	$r = \frac{0.1714}{2} = 0.0857$
1. 0.500 Ans: 3 Explanation The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2} \times \frac{(\sqrt{2}-1)^2}{2-1}$	$\frac{1}{2} = \frac{1}{2}(0.414)^2$	$r = \frac{0.1714}{2} = 0.0857$
Ans: 3 Explanation The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2} \times \frac{(\sqrt{2}-1)^2}{2-1}$	$\frac{1}{2} = \frac{1}{2}(0.414)^2$	$r = \frac{0.1714}{2} = 0.0857$
Explanation The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2} \times \frac{(\sqrt{2}-1)^2}{2-1}$		\sim
The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} \ge \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2} \ge \frac{(\sqrt{2}-1)^2}{2-1}$		\sim
The given sum $\rightarrow \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}+1} \ge \frac{1}{2} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{1}{2} \ge \frac{(\sqrt{2}-1)^2}{2-1}$		\sim
Or		\sim
Or		\sim
	$=\frac{1}{2}=\frac{2-2\sqrt{2}+1}{1}$	0.172 0.005 5
	2 1	= 0.0856
	۷ L	2
		0
45. If $\sqrt{1936}$ = 44, then the value of	$\sqrt{19.36}$ +	$\sqrt{0.1936} + \sqrt{0.001936} +$
$\sqrt{0.00001936}$ up to two places of decimals is		
1. 4.87 2. 4.86	3.4.89	4. 4.88
Ans:3		
Explanation		
$\operatorname{Given}\sqrt{19\cdot 36} = 4\cdot 4$		
$\therefore \sqrt{0 \cdot 1936} = 0.44, \sqrt{0.001936} = 0.044 \text{ and}$	nd $\sqrt{0.00}$	0001936 = 0.0044
:. The given sum $\rightarrow 4.4 + 0.44 + 0.044 + 0.000$)44 = 4.8884 a	≈ 4.89
46. If $2*3 = \sqrt{13}$ and $3*4 = 5$, then the value of $5*$		
$1.\sqrt{17}$ $2.\sqrt{29}$ Ans: 4	3.12	4. 13
Alls. 4		
Explanation:		
Given: $2^*3 = \sqrt{13} = \sqrt{2^2 + 3^2}$ and $3^*4 = \sqrt{9 + 16} = \sqrt{13}$	= 5.	
Therefore $5^* 12 = \sqrt{5^2 + 12^2} = \sqrt{169} = 13$	-	
$\frac{1}{12} - \sqrt{3} + \frac{1}{12} - \sqrt{107 - 13}$		
47. The value of sin 79° cos 11° + cos 79° sin 11°	is equal to	
	3. 1/2	4.0
Ans: 1		
		1
Explanation	0.0 (0.00	
It is known that: $\cos \theta = \sin (90^\circ - \theta^\circ)$ and sin	$1 \theta^{\vee} = \cos(90^{\circ})$	с — Ө°)

Ans:4.

