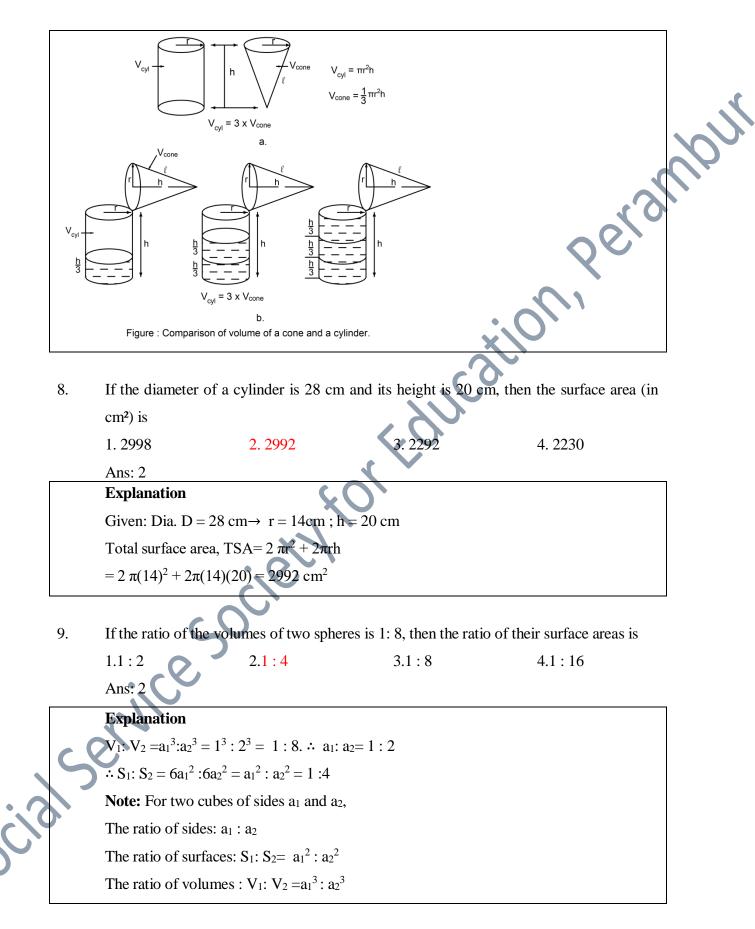
1. A shopkeepers charges are 20% over cost price. He allows his customers 10% off their bills for cash payment. His net gain per cent is

		1. 12 2. 8 3. 10 4. 15
		Ans: 2
		Explanation
		Let CP = 100
		Marked price, MP = 120
		Discount = 10% of MP = 12
		SP = MP - Discount = 120 - 12 = 108
		Profit = SP - CP = 108 - 100 = 8
		Gain= 8
	2.	What is the speed of a car if its wheel is 0.7 m in diameter and makes 500 revolutions
	2.	per minute ?
		1. 2.2 kmph 2. 60 kmph 3. 66 kmph 4. 100 kmph
		Ans: 2
		Explanation
		Distance travelled in one minute = $\pi DN = \pi \times 0.7 \times 500$ m/min.
		Distance travelled in one hour in kilometer = $\pi \ge 0.7 \ge 500 \ge \frac{60}{1000} = 65.94 \text{ km}$
		$\therefore \text{ Speed} = 66 \text{ kmph}$
	3.	If the areas of the three adjacent faces of a cuboid are x, y and z, then the volume of the
	5.	cuboid is
		1.xyz 2.2xyz $3.\sqrt{xyz}$ $4.3\sqrt{xyz}$
		Ans:3
		Explanation Let the length, breadth and height of the cuboid be l, b and h respectively.
		\therefore The area of its faces are x=lb, y=bh, z=lh
)	$\therefore \text{ Volume V}$
$\mathbf{C}\mathbf{N}$	-	$xyz = l^2b^2h^2 = (lbh)^2 = xyz$
		$\therefore V = lbh = \sqrt{xyz}$

Shape	Figure	Lateral / Curved surface area,(LSA) in square units	Total surface area,(TSA) in square units	Volume, V in cubic units	Nomenclature
1. Cuboid	l b	2(ℓb + bh + hℓ)	2(ℓb + bh + hℓ)	∦xbxh	ℓ = length, b = breadth, h = height d = $\sqrt{\ell^2 + b^2 + h^2}$
2. Cube	a d a a	4a ²	6a ²	a ³	a = edge of cube d = a√3
3. Right circular cylinder		2πrh	2πr(r+h)	πr ² h	r = radius h = height
4. Hollow cylinder		2π(R+ r)h	$\frac{2\pi(R^2-r^2)+}{2\pi(R+r)h}$	$\pi(R^2-r^2)h$	R= radius of outer cylinder r = radius of inner cylinder h = height
5. Sphere		_	$4\pi r^2$	$\frac{4}{3}\pi r^3$	r = radius of the sphere
6. Hemisphere		2πr ²	$2\pi r^2 + \pi r^2$ $= 3\pi r^2$	$\frac{2}{3}\pi r^3$	r = radius of the hemisphere
7. Right circular cone		πrl	πr(ℓ+r)	$\frac{1}{3}\pi r^2h$	r = radius of base, h=height, ℓ =slant height =√h² + r²
8. Frustum of a right circular cone		$\pi(R+r)_{\ell}$ where $\ell = \sqrt{h^2 + (R-r)^2}$	$\pi \left[R^{2} + r^{2} + (R + r) \ell \right]$	$\frac{\pi h}{3} [R^2 + r^2 + Rr]$	r = radius of top circle R = radius of the base circle h=height, ℓ=slant height
9. Torus		www.	4π²rR sssfep.com	$2\pi^2 r^2 R$	R = Torus radius r = Tube radius V = Volume


5000 4.

If the area of one face of the cube is numerically 1.5 times it perimeter, the volume (in cm³) of the cube is

nour

sssfep.com

	1. 125	2. 144	3. 216	4. 312
	Ans: 3			
	Explanation			
	Given: Face area o	f a cube, $a^2 = 1.5 \times$	P where a is the side	le and perimeter is P (P=4a)
	i.e., $a^2 = 1.5 \times 4a =$	$6a \rightarrow a=6, \therefore V=a^3$	3 = 216	
		2		C
5.			-	cm and base radius 6 cm is
	1. 12π	2.36π	3. 72π	4. 144π
	Ans: 4			<u> </u>
	Explanation V =	$=\frac{l}{3}\pi r^{2}h$		10
		6. $\therefore V = \frac{l}{3}\pi x 6^2 x 1$	$2 = 144\pi$	<i>`</i> 0,`
		3		
6.	If the height and	the radius of the	cone are doubled	then the volume of the con
0.	becomes	the futures of the	cone are doubled,	then the volume of the con
	1. 3 times	2.4 times	3.6 times	4.8 times
	Ans:4	2. 4 times	5. Othlics	4. 0 times
			0,	
	Explanation: V =	$=\frac{1}{3}\pi r^2 h$		
	r→2r			
	h→2h			
	$\therefore \mathbf{V} \longrightarrow \frac{l}{3} (2\mathbf{r})^2 \times 2\mathbf{h}$	$=\frac{l}{3}$ x8r ² h =8V		
	6			
7.	The ratio of volum	e of a right circular	r cylinder and right	circular cone of the same bas
	and height will be			
	11:3	2.3:1	3.4 : 3	4.3:4
C	Ans: 2			
	Explanation	1./ X-1 - f 1/2		
	voi of Cyliner π r ²	h/ Vol of cone 1/3	πr ⁻ n	

10. If the height of the cone is half the radius of the sphere, then the radius of the base of a cone which has the same volume as a sphere of 5 cm radius, is

	1. 10 cm	2. $10\sqrt{2}$ cm	3. $5\sqrt{2}$ / 2 cm	4. $10\sqrt{2}/2$ cm	n
	Ans: 2				
	Explanation				
	Let the radius of cone	be, r.	Given		
	Volume of the sphere,	$V_{s} = \frac{4}{3}\pi \times 5^{3} = \frac{500}{3}\pi$	Sphere	Cone	<u>(</u>)
	Volume of the cone, V	$V_{\rm c} = \frac{1}{3}\pi r^2 \times \frac{5}{2} = \frac{5}{6}\pi r^2$	r = 5	$h = \frac{r}{2}$	
	$\therefore \frac{5}{6}\pi r^2 = \frac{500}{3}\pi$		V _{Cone}	= V _{Sphere}	
	$r=10\sqrt{2}$			<i>;</i> (0)	
11.	A cube of side 6 cm is be	cut into number of	f cubes of side 2 cm	The number of cut	bes will
	1.6	2.9	3.12	4. 27	
	Ans: 4				
	Explanation	22			
	Volume of cube of 6 cm	m side, $V_1 = 216$ cr	• ? m ³		
	Volume of cube of 2	cm side, $V_2 = 8$ cm	3		
	No .of small cubes $=\frac{6}{2}$	$\frac{\times 6 \times 6}{\times 2 \times 2} = \frac{216}{8} = 27$			
12.	Which of the following	g numbers is prime	?		
	15, 16, 17, 18 and 20	- 1			
<u>}</u>	1. 17 2. 18	3.	15	4. 16	
	Ans: 1.				
р	: prime numbers.				
Box					

factor is a whole numbers that can be divided evenly into another number. The few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. Numbers that have more than two factors are called composite numbers. The number 1 is neither prime nor composite. Prime numbers up to 1000 are hereunder.

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, 101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997.

3.4

- 13. $\sin^2 30^\circ + 4 \cot^2 45^\circ \sec^2 60^\circ$ is equal to
 - 1.0

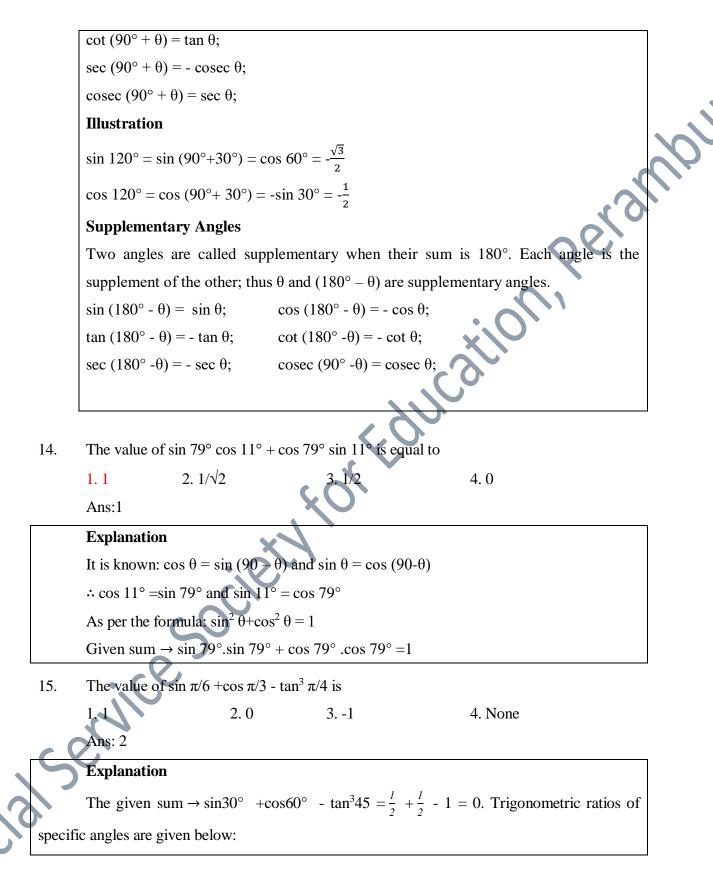
Ans: 2

Explanation

$$=\left(\frac{l}{2}\right)^2 + 4 \times l^2 - 2^2 = 1/4$$

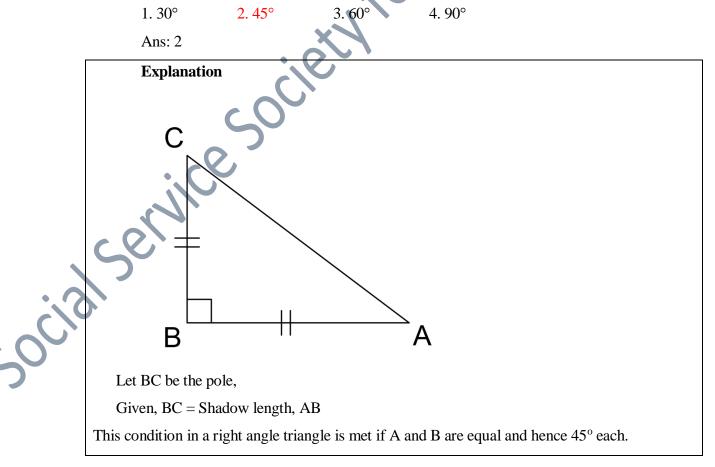
$$(\because \sec 60 = \frac{l}{\cos 60} = \frac{l}{\frac{1}{2}})$$

Box: Supplementary and complementary angles


2.-

Two angles are called complementary when their sum is 90°. Each angle is the complement of the other; thus θ and 90° – θ are complementary angles. sin (90° - θ) = cos θ ; cos (90° - θ) = sin θ ; tan (90° - θ) = cot θ ; cot (90° - θ) = tan θ ; sec (90° - θ) = - cosec θ ; cosec (90° - θ) = sec θ ;

Illustration


scia

$$\sin 60^\circ = \sin (90^\circ - 30^\circ) = \cos 30^\circ = -\frac{\sqrt{3}}{2}$$
$$\cos 30^\circ = \sin (90^\circ - 60^\circ) = \sin 60^\circ = -\frac{\sqrt{3}}{2}$$
$$\sin (90^\circ + \theta) = -\cos \theta;$$
$$\cos (90^\circ + \theta) = \sin \theta;$$
$$\tan (90^\circ + \theta) = \cot \theta;$$

			<u>Trigonom</u>	etric ratios o	of some speci	<u>fic angles</u>			
θ	0° 0	$\frac{30^{\circ}}{\frac{\pi}{6}}$	$\frac{45^{\circ}}{\pi}{4}$	$\frac{60^{\circ}}{\frac{\pi}{3}}$	$\frac{90^{\circ}}{\frac{\pi}{2}}$	180° π	$\frac{270^{\circ}}{3\pi}$	360° 2π	
sin $ heta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0	
cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1	
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined	0	Not defined	0	
cosec θ	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	Not defined	-1	Not defined	
sec $ heta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined	-1	Not defined	1	
cotθ	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	Not defined	0	Not defined	

16. The angle of elevation of the moon when the length of the shadow of a pole is equal to its height, is

	17.	(64) ^{-1/2} - (-32) ⁻¹	^{4/5} equals			
		1. 1/16	2. 1/8	3. 3/16	4. 3/8	\$
		Ans: 1				
		Explanation				
		$\frac{1}{\sqrt{64}} - [-32]^{-1}$	$-4/5 = \frac{1}{8} - \left[-2^5\right]^{\frac{-4}{5}} =$	$\frac{1}{8} - \frac{1}{(-2)^4} = \frac{1}{8} - \frac{1}{16} =$	$=\frac{2-1}{16}=\frac{1}{16}$	- 3C
	18.	A is five time	s as large as B. By l	now much per cent is	s B less than A ?	201
		1.20%	2.25%	3.75%	4.80%	
		Ans: 4				
		Explanation			X	
		A = 5B,			6	
		$B = \frac{A}{5} = 20\% A$	A		S	
		\therefore B is less by	7 80% of A	<0		
				~ ~		
	19.	The simple in	terest on a sum of n	noney is 1/9 of the p	rincipal and the number	of years is
		equal to the ra	ate per cent per annu	m. The rate per cent	t per annum is	
		1.3	2. 1/3	3. $3\frac{l}{3}$	$4.\frac{10}{3}$	
		Ans:4				
		Explanation				
		Let the princi	pal be P			
		Given, SI = F	P/9 and N = Rate = I	R (since time is same	e as rate)	
		\therefore SI = PNR/1	.00			
		From given c	onditions, SI = $\frac{P}{9}$ =	$\frac{P.R.R}{100} \rightarrow \mathbf{R}^2 = \frac{100}{9} \rightarrow$	$R = \frac{10}{3}$	
	20.	If $A : B = 3 : 4$	4, B : C = 8 : 9 and C	C: D = 12: 13, then	A : D is equal to	
		1. 13: 8	2.2:3	3.4:9	4. 8:13	
5		Ans: 4				
		Explanation				
		$\frac{A}{D} = \frac{A}{B} \times \frac{B}{C}$	$\times \frac{C}{D}$			

sssfep.com

$$=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{12} = 8:13$$
Guidance:

$$\frac{a}{b} = \frac{c}{d} \implies a : b = c : d$$

$$a : 2 : 5 : 8 \qquad 3.9:1 \qquad 4.27:2$$
Ans: 1
Explanation
From given conditions, $2x = 3y$, $\therefore x = \frac{3y}{2}$
 \therefore The given sum $\rightarrow (5 \times \frac{3y}{2} + 4y) : (\frac{5x/2y}{2} + 4y) = \frac{25y}{2} : \frac{2y}{2} \rightarrow 23:7$
2. If $ab = bc$, then $a^4:b^4$ is equal to
1. $ac:b^2 \qquad 2.a^2:6 \qquad 3.c^2:a^2 \qquad 4.b^2:ac$
Ans: 2
Explanation
 $\frac{a}{b} = \frac{1}{a} + b^2 = a$
 $\therefore b^4 = a^2c^2 \Rightarrow a^4:b^4 - a^4:a^2c^2 = a^2:c^2$
2. The average of three numbers is 15. If two numbers are 7 and 28, the third is
 $1:4 \qquad 2.21 \qquad 3.5 \qquad 4.10$
Ans: 4
Explanation
Let the three numbers be a, b, $c \rightarrow 7, 28$ and c
Average of 3 numbers, a, b and $c = (a+b+c)/3 = 15$
 $i.e., (7+28+c) = 45 \therefore c = 10$

24. If the altitude of an equilateral triangle is $\sqrt{6}$ cm, its area (in cm²) is

1. $2\sqrt{2}$ 2. $2\sqrt{3}$ 3. $3\sqrt{3}$ 4. $6\sqrt{2}$

Ans: 2

erant **Explanation** For an equilateral triangle, (i) If height or altitude h is given, $A = \frac{h^2}{\sqrt{3}}$ (ii) If side a is given area, $A = \frac{\sqrt{3}}{4}a^2$ (Note: $h = \frac{\sqrt{3}}{2}a$ and $a = \frac{2h}{\sqrt{3}}$) For the given sum: A = $\frac{h^2}{\sqrt{3}}$ = $\frac{\sqrt{6} \times \sqrt{6}}{\sqrt{3}}$ = $\frac{6}{\sqrt{3}}$ = $\frac{6\sqrt{3}}{3}$ = $2\sqrt{3}$ Sound travels at 330 m/s. How many kilometres away is a thunder cloud when its sound 25. follows the flash after 10 seconds ? 3. 0.33 1.3.3 2.33 4.3.33 Ans:1 Explanation Speed of sound = 330 m/sTime taken for the sound to reach = 10 sec Distance = speed \times time \therefore Distance of source of thunder = $330 \times 10 = 3300 \text{ m} = 3300 / 1000 \text{ km} = 3.3 \text{ km}$ 26. A train moving with a uniform speed of 60 kmph crosses a pole in 6 seconds. The length of the train (in metres) is 2002.150 3.120 4.100 Ans: 4 **Explanation** Let the length of the train be L meter. Train crossed the pole is 6 sec. So distance covered in 6 sec. is L meter. Train Speed, $V = 60 \times \frac{5}{18}$ m/s Given: $\frac{L}{V} = 6$; \therefore L = 6 x V = 6 x 60 $\times \frac{5}{18}$ = 100 m sssfep.com

- 27. Mari rides a cycle at 8 kmph. After every 10 km travel, he rests for 20 minutes. Time taken to cover a distance of 40 km is
 - 1. 5 hr 2. 5 hr 20 minutes
 - **3.** 6 hr 4. 6 hr 20 minutes

2.10

Ans:3

Explanation

Time taken for 10 km distance travelled at 8kmph = $\frac{10}{8}$ = 1 hr 15 min.
Time taken to cover the given distance of 40 km as per given condition: 10 km distance travelled
at 8kmph and rest time of 20 minutes between travels are given below:

1 hr 15 min. + 20 min +1 hr 15 min. + 20 min +1 hr 15 min. + 20 min + 1 hr 15 min. = 6 hr

28. If x men can do a piece of work in 8 days and (x+4) men can do the same work in 6 days, then x is equal to

4.24

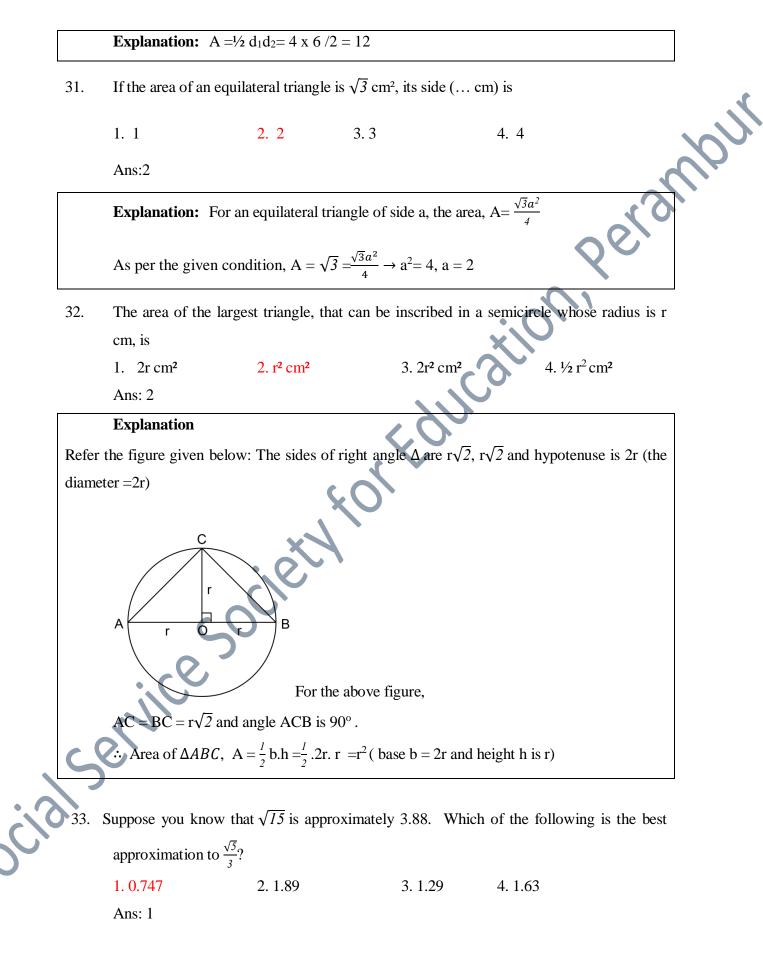
Ans:	3		

1.6

Explanation	
Men	No. of days
Х	8
x + 4	6
For the same v	work, man days (man x number of days) are equal,
i.e., $8x = 6(x - 6)$	$(+4) \rightarrow x = 12$

29. A tap can fill a tank in 25 minutes and another can empty it in 50 minutes. If both are opened simultaneously when will the tank be full ?

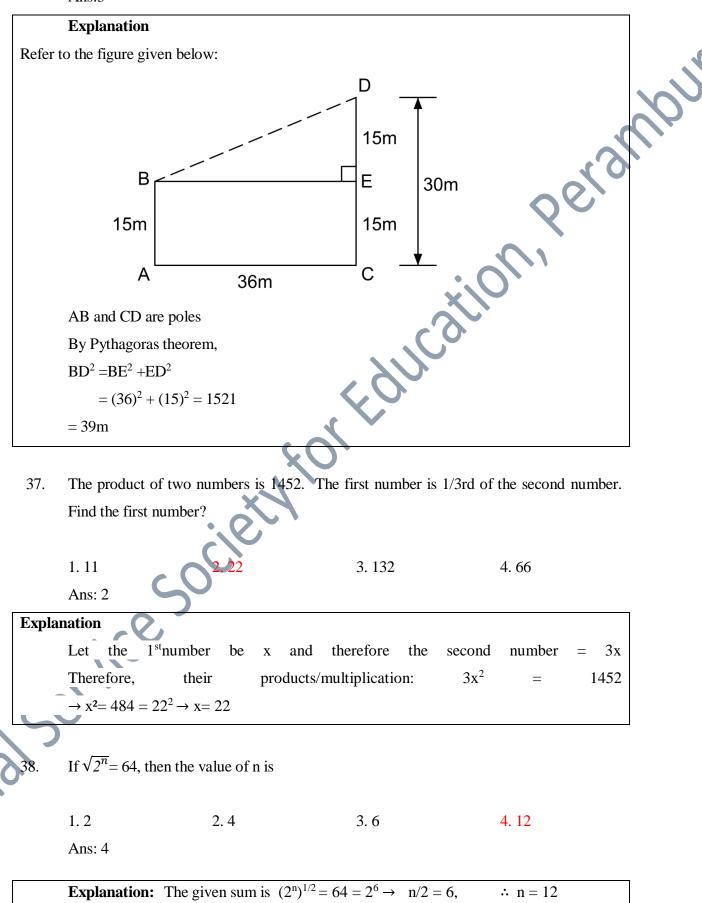
 1. 23 minutes
 2. 22½ minutes
 3. 50 minutes
 4. None

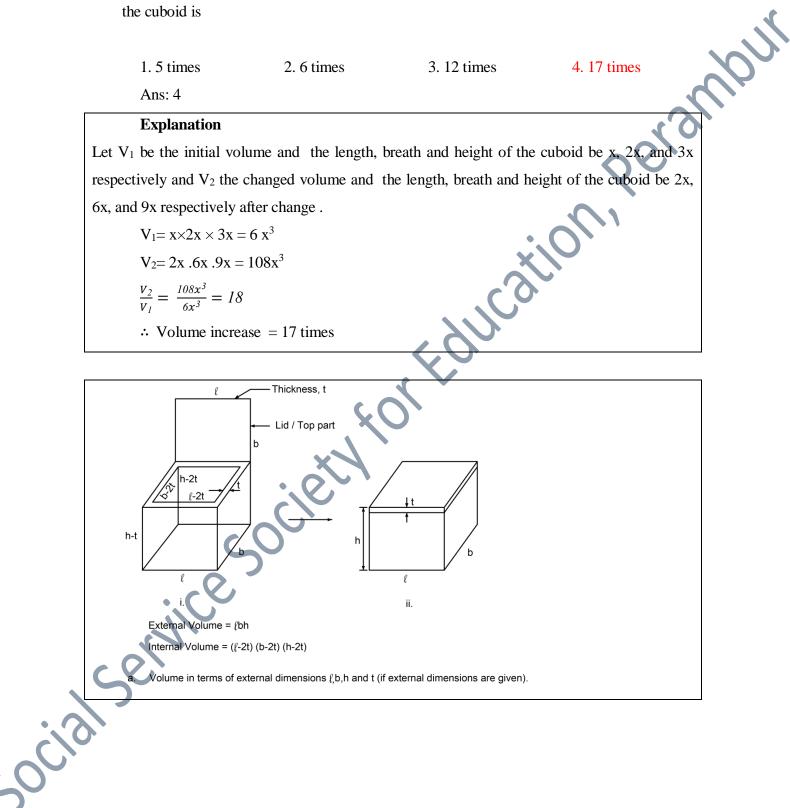

 Ans: 3

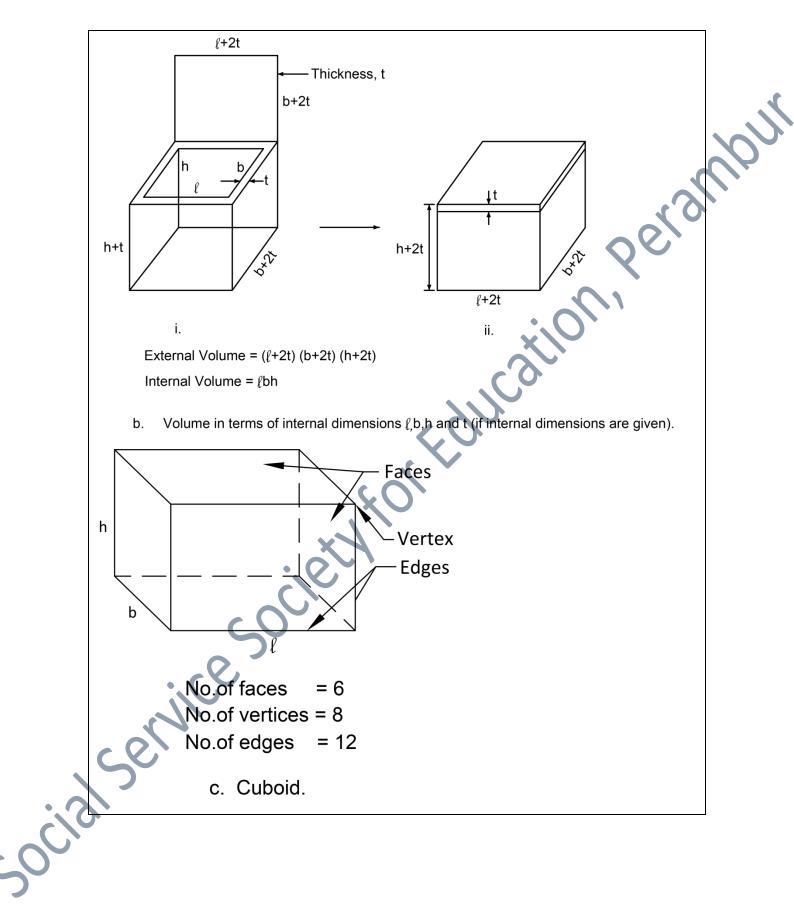
Explanation Let t be the time taken to fill the tank if both the taps are opened $\frac{1}{t} = \frac{1}{25} - \frac{1}{50} = \frac{2-1}{50} = \frac{1}{50}$ $\therefore t = 50$

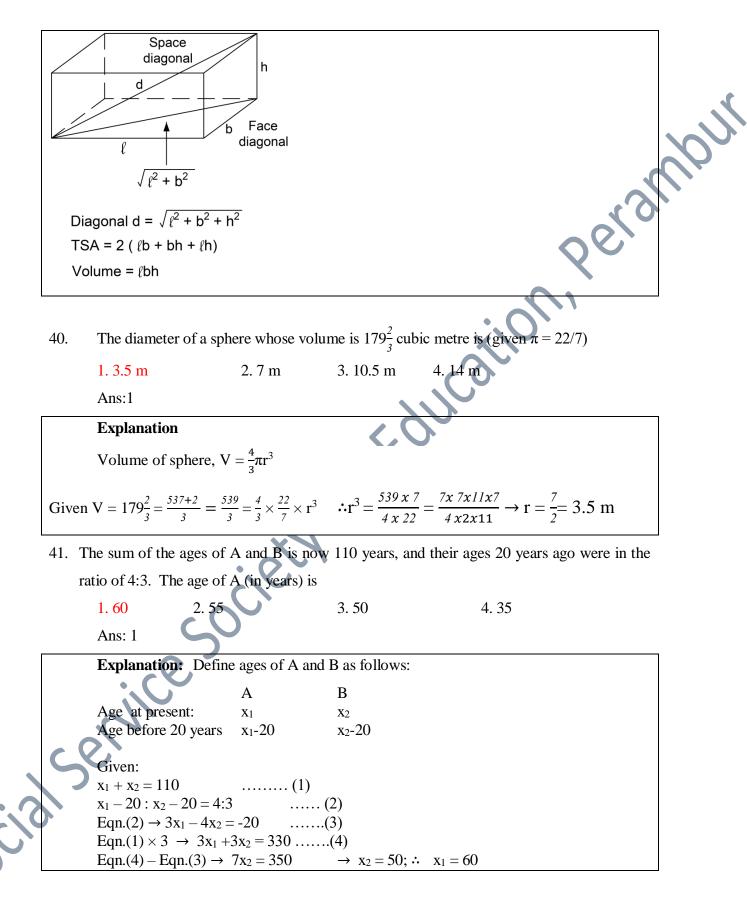
30. The diagonals of a rhombus measures 4 cm and 6 cm. Its area (in sq. cm) is

 1. 6
 2. 8
 3. 12
 4. 24

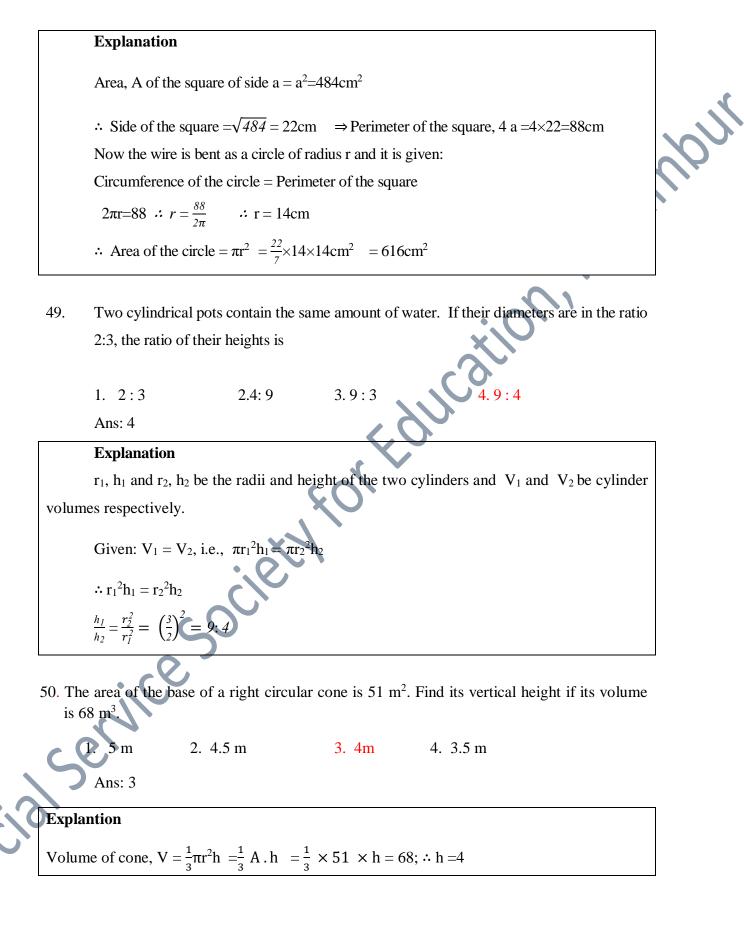

 Ans: 3




sssfep.com



39. The length, breadth and height of a cuboid are in the ratio 1:2:3. The length, breadth and height are increased by 100%, 200% and 300% respectively. The increase in the volume of the cuboid is



42. The marks obtained by Mani and Raju are in the ratio of 4:5 and the marks obtained by Raju and Moorthy are in the ratio of 3:2. Therefore, the marks obtained by Mani and Moorthy are in the ratio of

		sssfep	.com				
	1. 0.5	2. 1	3. 4.1	4. 2			
	Ans: 3						
	Explanation						
	Let x be man's s	wimming speed and y be	the water current	nt speed.			
	Given:						
	Upstream speed:	x-y=13/5	$m/hr = 2.6 \ km/h$	r	.(1)		
	Downstream spe	eed: x+y=2	8/5 km/hr =5.6 k	xm/hr	(2)		
	Therefore, speed	l of current, y : $(\frac{1}{2} \{ Eq. (2) \}$	$- \text{Eqn.}(1) = \frac{1}{2} (5.6)$	5+2.6) km/hr =4.1 km/hr			
46.	The L.C.M. of t	he numbers 4,8,12 and 1	5 is				
	1.8	2.12	3.16	4. 48			
	Ans: 4			- <u></u>			
	Explanation						
	Given numbers	can be written as" 1 ×4, 2	\times 4, 3 \times 4, 4 \times 4	4			
	$\therefore LCM = 3 \times 4$	× 4 =48					
		X)				
47.				lead balls of radius 0.5 cm	are		
		number of small lead ba		4 0000			
	1. 20 Ans:4	2. 125	3.400	4. 8000			
	Explanation: 1	at valuma V, ha tha sp	hara of radius	P to be malted and volume			
one sr	nall ball of radius		nere or radius	R to be melted and volume	5 01		
	nan oan or radius						
	For a sphere, V	$=\frac{4}{3}\pi r^3$.					
6							
$\overline{)}$	$\therefore \frac{V_1}{v_2} = \frac{R^3}{r^3} = \frac{10}{(0.5)}$	$\frac{3}{(1)^3} = (20^3) = 8000$					
48.	A wire, bent in	the form of a square, en	closes an area of	f 484 cm ² . If the same wir	e is		
	bent so as to for	m a circle, then the area e	nclosed will be ((given $\pi = 22/7$)			
	1. 484 cm ²	2. 538 2/7cm ²	3. 616 cm ²	4. 644 cm ²			
	Ans:3						

