He	ow is $\frac{1}{4}$ expressed	d as percentage?		
1. 75%	2. 8	80%	3. 25%	4. 12.5%
A	ns: 3			
Ex	xplanation			
$\frac{1}{4}$ =	$= 0.25 = \frac{25}{100} = 25$	5%		
				5
2. Fi	nd $\frac{0.35 \times 0.35 - 0.34}{69}$	4 x 0.34		00)
1.	0.0001	2. 0.001	3. 0.01	4. 0.2
A	ns: 1			
Ex	xplanation			
Tł	he given sum is c	of the form $\frac{a^2-b^2}{(a+b)r^{10}}$	$\frac{1}{10}$ (where a = 0.35 and	b 0.34)
		$(u+b)\lambda = 0$		
		a-b	(0.35 - 0.34) 0.01	0001
		$=\frac{a-b}{100}=$	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$	0001
		$=\frac{a-b}{100}=$	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$	0001
How is $\frac{1}{2}$	% expressed as a	$=\frac{a-b}{100} =$	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$	0001
How is $\frac{1}{2}$ 1. 0.5	% expressed as a 2. ($=\frac{a-b}{100} =$ a decimal fraction? 0.05	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5	% expressed as a 2. (ns: 3	$=\frac{a-b}{100} =$ a decimal fraction?	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 Au	% expressed as a 2. (ns: 3 xplanation	$=\frac{a-b}{100} =$ a decimal fraction?	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 And Example 1	% expressed as a 2. (ns: 3 xplanation 6 = 1/200 = 0.00	$=\frac{a-b}{100} =$ a decimal fraction? 0.05 5	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 An Ex $\frac{1}{2}$	% expressed as a 2. (ns: 3 xplanation 6 = 1/200 = 0.00	$=\frac{a-b}{100} =$ a decimal fraction? 0.05 5	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 Au Ex $\frac{1}{2}$ How much	% expressed as a 2. (ns: 3 xplanation 6 = 1/200 = 0.00	$=\frac{a-b}{100} =$ a decimal fraction? 0.05 5	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 An Ez $\frac{1}{2}$ How muc	% expressed as a 2. (ns: 3 xplanation 6 = 1/200 = 0.00 h is 40% of 3505	$=\frac{a-b}{100} =$ a decimal fraction? 0.05 5 ?	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 Au Ez $\frac{1}{2}$ How muc 1. 140	% expressed as a 2. (ns: 3 xplanation 6 = 1/200 = 0.00 h is 40% of 350 2.	$=\frac{a-b}{100} =$ a decimal fraction? 0.05 5 135	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005 3. 180	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 Ai Ez $\frac{1}{2}$ How muc 1. 140 Ai	% expressed as a 2. (ns: 3 xplanation 6 = 1/200 = 0.00 h is 40% of 350 2. ns: 1	$=\frac{a-b}{100} =$ a decimal fraction? 0.05 5 2 135	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005 3. 180	4. 0.0005
How is $\frac{1}{2}$ 1. 0.5 Au Ez $\frac{1}{2}$ How muc 1. 140 Au Ez	% expressed as a 2. (ns: 3 xplanation 6 = 1/200 = 0.00 h is 40% of 350 2. ns: 1 xplanation	$=\frac{a-b}{100} =$ a decimal fraction? 0.05 5 2 135	$\frac{(0.35 - 0.34)}{100} = \frac{0.01}{100} = 0.0$ 3. 0.005 3. 180	4. 0.0005

5. The radii of two concentric circles are 12 cm and 5 cm respectively. What is the area of the annular space between the two circles?

	1. 330 cm^2	2. 460 cm^2	3. 374 cm^2	4. 340 cm^2
	Ans: 3			
	Explanation			
	Let the radii of tw	wo circles be, R and r.		
	∴Area of annula	space between thetwo	$p \text{ circles} = \pi (R^2 - r^2)$	$=\frac{22}{7}(12^2-5^2)$
			=	$\frac{22}{7} \times 17 \times 7 = 374$
6.	Ravi and Samy own in 15 days.	together can finish a j How long will Samy ta	ob in 10 days. Ravi ca ake to do the job by him	in do the same job on his mself?
	1. 22 Ans: 4.	2. 28	3. 25	6 ⁴ , 30
	Explanation		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Ans:			,
	(Ravi +Samy)'s	one day's work $=\frac{1}{10}$	C00	
	Ravi's one day w	vork $=\frac{1}{15}$	$\langle \rangle$	
finish	∴ Samy's one dan the work.	ay work $=\frac{1}{10} - \frac{1}{15} = \frac{3}{3}$	$\frac{2}{10} = \frac{1}{30}$. Therefore Sa	my will take 30 days to
7.	60% of which m	umber is 900.		
	1. 1200	2. 1600	3. 1500	4. 1800
	Ans:3			
	Explanation	ne v		
	60% of x = 900 -	$\Rightarrow x = \frac{900}{60} x 100 \qquad \therefore$	x = 1500	
8.	Which of the foll	lowing is the largest fr	action?	
2	$1.\frac{15}{16}$	$2.\frac{8}{13}$	$3.\frac{7}{8}$	$4.\frac{11}{12}$
	Ans: 1 Explanation]
	Елрипанон	15 9 7 11		

9. Which of the following figures of given dimensions has the longest perimeter:

- 1. A square of side 10 cm
- 2. A rectangle of sides 12 cm and 9 cm
- 3. A circle of radius 7 cm
- 4. A rhombus of sides 9 cm

	14. Convert 72km	ph in to m/s			
	1.10m/s	2. 15m/s	3. 20 m/s	4. 25m/s	
	Ans: 3				
	Explanation				
	$1 \text{ kmph} = \frac{5}{18} \text{ m}$	l/s			
	\therefore 72 kmph = $\frac{5}{1}$	$\frac{5}{8} \times 72 = 20$ or $\frac{72000}{60x60}$ m/	S		
,	Table:Meter per secor	nd (m/s) to Kilometer per	hour (KM/Hr or KM	PH) (conversion table)	
	Meter per second	Kilometer per hour		\sim	
	(m/s)	(KMPH)			
	1	3.6	X		
	2	7.2	\sim		
	3	10.8			
	4	14.4	$\langle O \rangle$		
	5	18	s V		
	6	21.6			
	7	25.2			
	8	28.8			
	9	32.4			
	10	36			
	11	39.6			
	12	43.2			
	13	46.8			
	14	50.4			
	15	54			
	16	57.6			
.?	17	61.2			
\sim	18	64.8			
	19	68.4			
-	20	72			

15. A man borrowed Rs. 8000 at 10% per annum simple interest and immediately lent the whole sum at 10% per annum compound interest. What does he gain at the end of 2 years?

		1. Rs.60	2. Rs. 80	3. Rs.100	4. Rs.120	
		Ans:2				20
	of P a	Explanation: The above relation the rate of R for 2	ne difference betw on is applicable, i 2 years only.)	een CI and SI for 2 ye .e., the difference betw	ars = $P \frac{R^2}{100}$ ween CI and SI for a princi	pal
		CI and SI for 2 y	ears = $P \frac{R^2}{100}$ = 80	$00 \times \left(\frac{10}{100}\right)^2 = 80$ (gain		
	16.	The product of ty	vo numbers is 24.	Their average is 6. Th	e cube of their sum is :	
		1. 1628 Ans: 2	2. 1728	3. 1528 4. N	one of the above	
		Explanation				
		Let x and y be th	e numbers. The gi	ven conditions are		
		1. xy = 24,		~		
		$2.\frac{\mathbf{x}+\mathbf{y}}{2}=6; \div (\mathbf{x}+\mathbf{y})$	$(y) = 12 \rightarrow (x)$	$(x + y)^3 = 12^3 = 1728$		
	17.	Find $(a^2 + b^2)$ (a	.+b) (a-b).			
		1. $a^4 + b^4$	2 . $a^4 - b^4$	$3.a^3 + b^3$	$4.a^3 - b^3$	
	Expla (a+	Ans:2 nation b) $(a-b = (a^2 - b^2)$				
	(a ²	$(a^2 - b^2)(a^2 - b^2) = a^2$	- b ⁴			
	18.	One micron is e	qual to –			
\cdot		1.0.1 mm	2. 0.01 mm	3. 0.001 mm	4.0.0001 mm	
		Ans: 3				
~		Explanation				
		One micron = $\frac{1}{100}$	$\frac{1}{100}$ mm or 10 ⁻⁶ m			

19. If α and β are the roots of the questions $5x^2 - x - 2=0$, then the equation for which roots are $\frac{2}{\alpha}$ and $\frac{2}{\beta}$ is :

1. $x^2-x+10=0$ 2. $x^2-x-10=0$ 3. $x^2+x+10=0$ 4. $x^2+x-10=0$

Ans:4

Explanation

Work out the sum from the first principles.

Given: α , β are roots of the equation $5x^2-x-2=0$. The given equation is of the form: $ax^2 + bx + c=0$ For the above equation, sum of the roots $= \frac{-b}{a}$ and product of the root $= \frac{c}{a}$ For the equation to be found, let the roots be α and β . \therefore Sum of roots $= \alpha + \beta$ and product of the roots $= \alpha \beta$ For the given Eqn. $5x^2-x-2=0$, a = 5, b = -1 and c = -2 $\therefore \alpha + \beta = \frac{1}{5}$ and $\alpha\beta = -\frac{2}{5}$ The required equation with roots $\frac{2}{\alpha}$ and $\frac{2}{\beta}$ is derived as follows: The sum of roots: $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2(\alpha + \beta)}{\alpha\beta} = \frac{2(\frac{1}{5})}{-\frac{2}{5}} = -1$ Product of roots: $\frac{2}{\alpha} \times \frac{2}{\beta} = \frac{4}{\alpha\beta} = \frac{4}{-2/5} = -10$ Hence, required equation: x^2 -(sum of the roots)x+(product of the roots) =0 x^2 -(-1)x+(-10)=0 $\rightarrow x^2$ +x-10=0

Box: Quadratic equation

- 1. The general form of a quadratic equation is $ax^2 + bx + c = 0$, $a \neq 0$. a, b and c are real numbers.
 - A real number x is said to be a root of the quadratic equation $ax^2 + bx + c = 0$ where $a \neq 0$ if $ax^2 + bx + c = 0$. The zeroes of the quadratic equation polynomial $ax^2 + bx + c = 0$ and the roots of the corresponding quadratic equation $ax^2 + bx + c = 0$ are the same.
- 3. Discriminant: The expression $b^2 4ac$ is called discriminant of the equation $ax^2 + bx + c = 0$ and is usually denoted by D. Thus discriminant $= b^2 4ac$.
- 4. Every quadratic equation has two roots which may be real, coincident or imaginary.

The given number is: $3 \times 21 \times 21 = 3 \times 3 \times 3 \times 7 \times 7$.	
Therefore to make it a perfect cube, multiply by 7.	

23. The height of a tree increases annually by1/8th of its height. What will be its height after 2 years, if the present height is 16 m?

5

	1. 20.25 m	2.19.88 m	3.20.72 m	4. 21.88m
	Ans: 1			<'O.'
	Explanation			00,
	Use compound intere	est formula.		X
	Height after 2 years =	$= 16\left(1+\frac{1}{8}\right)^2 = 16(1.1)$	$25)^2 = 16(1.265625) =$	20.25
	(or)		X	
	$16\left(1+\frac{1}{8}\right)^2 = 16 \times \frac{9}{8} \times \frac{9}{8}$	$\langle \frac{9}{8}$		
	$=\frac{81}{4}=20.25$		<u> </u>	
24.	If a chord subtends 80)° at the circumference	, the angle it subtends	at the centre is :
	1. 80°	2.40°	3.120°	4. 160°
	Ans: 4	XX		
	Explanation			
centre	$2 x80 = 160^{\circ}$ (One of	the features of an arc	subtended angle at the	circumference and
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
25. pro	The sum of squares o oduct of the two numb	f two numbers is 60 a pers is:	nd the square of their	difference is 44. The
c (	1. 16	2.18	3. 8	4.12
5	Ans: 3			
	<b>Explanation</b> Let the numbers are x	and y.		

As per the given conditions,

1. The sum of squares of two numbers is 60, i.e.,  $x^2 + y^2 = 60$  .....(1)

2. The square of difference between the two numbers is 44,

	i.e., $(x - y)^2 = 44$ (2)	
	Eqn.(2) $\rightarrow x^2 + y^2 - 2 xy = 44(3)$	
	Eqn.(1) – Eqn.(3) $\rightarrow 2xy = 60-44 = 16 \rightarrow xy = 8$ . Thus, the product of the two numbers is 8	),
	26. For any two non-zero rational, numbers x and y, $x^5 \div y^5$ is equal to	
	1) $(x \div y)^1$ 2b) $(x \div y)^0$ 3) $(x \div y)^5$ 4) $(x \div y)^{10}$	
	Ans:3. {The given sum can also be written as $\left(\frac{x}{y}\right)^5$ }	
	27. The value of $(16)^{0.16} \times (16)^{0.09}$ is :	
	1. 4 2. 3 3. 2 4.6	
	Ans: 3	
	Explanation	
	Ans: $(16)^{0.16} \times (16)^{0.09} = 16^{0.25} = (16)^{1/4} = (2^4)^{1/4} = 2$	
	28. There is sufficient food for 400 persons for 31 days. After 28 days, 280 persons leave the place. The number of days for which the balance food will last to feed the remaining persons is $1.5$ $2.10$ $3.15$ $4.9$	
	Ans: 2	
	Explanation	
	Quantity of total food available = 400x 31 Food consumed in first 28 days = 400x28 ∴ Balance quantity of food available after 28 days = 400x31-400x28 Number of persons left after 28days = 280; Balance persons available = 400-280 = 120	
	The number of days for which balance food will last = $\frac{(400x31-400x28)}{120}$ = 10	
j,	29. A tank can be filled in 9 hours. But due to a leak it takes one hour longer to be filled. if thetank is full, in what time will it get empty due to leak?	

Ans: 2

5

	Time taken to fill = $9hr$
	Time taken to fill due to a leak = $9+1 = 10$ hrs
	$\therefore$ Leak rate $=\frac{1}{2}-\frac{1}{12}$
	$\therefore \text{ Leak rate} = \frac{10-1}{1} = \frac{1}{1}$
	90 - 90
	•• 70 1115
30.	A train crosses a railway bridge 200 m long at a speed of 90 km per hour in 20
	1. 300 metre         2. 500 metre         3. 180 metre         4.250 metre
	Ans:1
	Explanation Let $L_{t} = \text{length of train}$
	$L_b = \text{length of bridge}$
	As per given condition, time taken to cross the bride, $t = \frac{L_t + L_b}{5} = \frac{L_t + 200}{5} = 20$
	$1 + 200$ $10^{-10}$
	$\frac{1}{25} = 20$
	∴L = 300
	1. $560 \text{ cm}^2$ 2. $640 \text{ cm}^2$ 3.80 cm ² 4. $720 \text{ cm}^2$
	Ans: 2
	Explanation
	Let side of the box = a. It is given: Height, $h = 2a$
	$V = a^2h = 2a^3 = 1024$
	$a^{3} = 512 = 8^{3}$
	$ \therefore a^3 = 512 = 8^3  \therefore a = 8  Surface area, S = 2(lb + bb + lb) $
	$\therefore a^{3} = 512 = 8^{3}$ $\therefore a = 8$ Surface area, S = 2( $\ell b$ + bh + $\ell h$ ) $\therefore 2 (8 \times 8 \times 8 \times 16 + 8 + 16)$
	$ \begin{array}{l} \therefore a^{3} = 512 = 8^{3} \\ \therefore a = 8 \\ \text{Surface area, } S = 2(\ell b + bh + \ell h) \\ \therefore 2(8 \times 8 \times 8 \times 16 + 8 + 16) \\ \therefore 2(64 + 128 + 128) = 2 \times 320 \end{array} $
	$ \therefore_{a}^{3} = 512 = 8^{3}  \therefore_{a} = 8  Surface area, S = 2(\ell b + bh + \ell h)  \therefore 2 (8 \times 8 \times 8 \times 16 + 8 + 16)  \therefore 2(64 + 128 + 128) = 2 \times 320  = 640 $
4	$ \therefore a^{3} = 512 = 8^{3}  \therefore a = 8  Surface area, S = 2(lb + bh + lh)  \therefore 2 (8 \times 8 \times 8 \times 16 + 8 + 16)  \therefore 2(64 + 128 + 128) = 2 \times 320  = 640 $
5	$\therefore a^{3} = 512 = 8^{3}$ $\therefore a = 8$ Surface area, S = 2( $\ell b + bh + \ell h$ ) $\therefore 2(8 \times 8 \times 8 \times 16 + 8 + 16)$ $\therefore 2(64 + 128 + 128) = 2 \times 320$ = 640 If volume and surface area of a sphere are numerically the same, then its radius is :
5	$\therefore a^{3} = 512 = 8^{3}$ $\therefore a = 8$ Surface area, S = 2( $\ell$ b + bh + $\ell$ h) $\therefore 2(8 \times 8 \times 8 \times 16 + 8 + 16)$ $\therefore 2(64 + 128 + 128) = 2 \times 320$ = 640 If volume and surface area of a sphere are numerically the same, then its radius is : 1. 1 2. 2 3. 3 4. 4
	$\therefore a^{3} = 512 = 8^{3}$ $\therefore a = 8$ Surface area, S = 2(lb + bh + lh) $\therefore 2 (8 \times 8 \times 8 \times 16 + 8 + 16)$ $\therefore 2(64 + 128 + 128) = 2 \times 320$ = 640 If volume and surface area of a sphere are numerically the same, then its radius is : 1. 1 2. 2 3. 3 4. 4
	$\begin{array}{l} \therefore a^{3} = 512 = 8^{3} \\ \therefore a = 8 \\ \text{Surface area, } S = 2(\ell b + bh + \ell h) \\ \therefore 2 (8 \times 8 \times 8 \times 16 + 8 + 16) \\ \therefore 2(64 + 128 + 128) = 2 \times 320 \\ = 640 \\ \end{array}$ If volume and surface area of a sphere are numerically the same, then its radius is : 1. 1 2. 2 3. 3 4. 4 Ans: 3
	$\therefore a^{3} = 512 \equiv 8^{3}$ $\therefore a = 8$ Surface area, S = 2(lb + bh + lh) $\therefore 2 (8 \times 8 \times 8 \times 16 + 8 + 16)$ $\therefore 2(64 + 128 + 128) = 2 \times 320$ = 640 If volume and surface area of a sphere are numerically the same, then its radius is : 1. 1 2. 2 3. 3 4. 4 Ans: 3 Explanation
	$\therefore a^{3} = 512 = 8^{3}$ Surface area, S = 2( $\ell b$ + bh + $\ell h$ ) $\therefore 2(8 \times 8 \times 8 \times 16 + 8 + 16)$ $\therefore 2(64 + 128 + 128) = 2 \times 320$ = 640 If volume and surface area of a sphere are numerically the same, then its radius is : 1. 1 2. 2 3. 3 4. 4 Ans: 3 Explanation Given: Volume and surface area of a sphere are numerically same

	i.e., $\frac{4}{3}\pi r^3 = 4\pi r^2$	$\rightarrow r^3 = 3r^2 \div r = 3$			
33.	A can finish a c same distance in	ertain journey in 10 houns in 8 hours, the speed of t	urs at a speed of 48 km he car must be increas	n/hr. In order to cover the ed by :	
	1.6 km/hr	2.7.5 km/hr	3. 12 km/hr	4.15 km/hr	5
	Ans:3				
	<b>Explanation</b> Let the desired a For the same dis	speed be V. stance, speed x time tak	en to cover the distanc	e remains same.	
	i.e., $10 \times 48 = 10^{-10}$	$he_1 = speed_2 \times time_2$ V x8		X Č	
	$\therefore V = 60$			201	
	i.e ., Inc .in spee	ed is (60 -48), ∴ Speed i	s to be increased by 12	2 km/hr	
34.	Find the probab	ility of getting a head in	a throw of a coin-		
	$1.\frac{1}{2}$	2. 1	3. 2	4. None of these	
	Ans: 1		$\sqrt{2}$		_
	<b>Explanation</b> The possibilities	s are H or T.	<b>)</b>		
	The probability	of getting a head in a th	row of a coin $=\frac{1}{2}$ .		
	Below Table 1	shows some examples o	f finite sample spaces		
	C	ocle			
C	0				
	$\sim$				
$\cdot $					
5					

	Table 1 : Some	e examples of finite sample spaces.	1	
SI.No	Random experiment	Sample space	Number of sample points in S	
1	One coin is tossed	S = {H, T)	n(S) = 2	
2	Two coins are tossed	S = {HH, HT, TH, TT}	n(S) = 4	- ex
3	Three coins are tossed	S = {ННН, ННТ, НТН, ТНН, НТТ, ТНТ, ТТН, ТТТ}	n(S) = 8	
4	A die is thrown	S = { 1, 2, 3, 4, 5, 6 }	n(S) = 6	
5	Two dice are thrown	$\begin{split} & S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),\\ & (2,1),(2,2),(2,3),(2,4),(2,5),(26),\\ & (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),\\ & (4,1),(4,2),(4,3),(4,4),(45),(4,6),\\ & (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),\\ & (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \end{split}$	n(S) = 36	
6	A plain card is drawn from a pack bearing numbers from 1 to 25	S = { 1, 2, 3, 4,,,,,,,	n(S) = 25	
7	A playing card is drawn from a well shuffled pack of 52 playing cards.	Diamond : Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King Spade : Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King Heart : Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King Club : Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King	n(S) = 52	
35 A trian	gle has sides of 5 c	m, 12cm and 13 cm. The le	ength of the pe	erpendicular from
vertex to 1.	the smallest side is          12cm       2. 5cm	n 3. 13cn		4. 8.5cm
A	ns:1			

Explanation



9. If $\frac{\log 16}{\log 2} = x$ , then value of x is : 1. 4 $2,\frac{1}{3}$ 3. 3 4. 5 Ans:3 Explanation $\log \frac{16}{2} = 8 = \log 2^3 = 3\log_2 = 3$ 40. If diameter of a circle increases by 30%, by what percent will the area of the circle increase? 1. 30% 2. 69% 3. 90% 4. 138% Ans: 2 Explanation $r \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{a} + \frac{1}{b} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10} = \frac{15}{120} - \frac{1}{10} = \frac{15}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{\frac{2\sqrt{3}}{2} a^2 sq. units}{2} \cdot \frac{\sqrt{3}}{2} a^2 sq. units$		$X = \frac{1}{18} \times \frac{9 \times 6 \times 15}{3 \times 3} = 5$		
1. 4 $2\frac{1}{3}$ 3. 3 4. 5 Ans:3 Explanation $\log \frac{16}{2} = 8 = \log 2^3 = 3\log_2 = 3$ 40. If diameter of a circle increases by 30%, by what percent will the area of the circle increase? 1. 30% 2. 69% 3. 90% 4. 1389 Ans: 2 Explanation $r \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively: $\therefore \frac{1}{4} + \frac{1}{6} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{2} \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2} \left[\frac{6+5+4}{60}\right] - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 2. $\frac{2\sqrt{3}}{3} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units	39.	If $\frac{\log 16}{\log 2} = x$ , then value of	x is :	
Ans:3 Explanation $\log \frac{16}{2} = 8 = \log 2^3 = 3\log_2 = 3$ 40. If diameter of a circle increases by 30%, by what percent will the area of the circle increase? 1. 30% 2. 69% 3. 90% 4. 1889 Ans: 2 Explanation $r \rightarrow 1.3r$ , $:A \rightarrow 1.69 r^2$ : Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $:\frac{1}{4} + \frac{1}{6} + \frac{1}{c} - \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}]$ $\frac{1}{5} - \frac{1}{10} = \frac{1}{2} [\frac{6+5+4}{60}] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 3. $\frac{2\sqrt{3}}{3} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units		1. 4 $2.\frac{1}{3}$	3. 3	4. 5
Explanation $\log \frac{16}{2} = 8 = \log 2^3 = 3\log_2 = 3$ 40. If diameter of a circle increases by 30%, by what percent will the area of the circle increase?1. 30%2. 69%3. 90%4. 138%Ans: 2Explanation $\Gamma \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%.41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days2. 40 days3. 30 days4. 20 daysAns: 2Explanation Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively: $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{2} \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2} \left[\frac{6+5+4}{60}\right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units		Ans:3		
$\log \frac{16}{2} = 8 = \log 2^3 = 3\log_2 = 3$ 40. If diameter of a circle increases by 30%, by what percent will the area of the circle increase? 1. 30% 2. 69% 3. 90% 4. 138% Ans: 2 Explanation $r \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{2} \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2} \left[\frac{6+5+6}{60}\right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{2\sqrt{3}}{2} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units		Explanation		52
40. If diameter of a circle increases by 30%, by what percent will the area of the circle increase? 1. 30% 2. 69% 3. 90% 4. 138% Ans: 2 Explanation $r \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively: $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{2} \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2} \left[\frac{6+5+4}{60}\right] - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 2. $\frac{2\sqrt{3}}{3} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units		$\log \frac{16}{2} = 8 = \log 2^3 = 3\log_2 =$	= 3	001
1. 30% 2. 69% 3. 90% 4. 158% Ans: 2 Explanation $r \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{2} \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2} \left[\frac{6+5+4}{60}\right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 2. $\frac{2\sqrt{3}}{2} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units	40.	If diameter of a circle incr increase?	reases by 30%, by what percent	cent will the area of the circle
Ans: 2 Explanation $r \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{[10} + \frac{1}{12} + \frac{1}{15}]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - [\frac{1}{a} + \frac{1}{b}] = \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}] - \frac{1}{10} = \frac{1}{2} [\frac{6+5+4}{60}] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2 sq$ , units 2. $\frac{\sqrt{3}}{2} a^2 sq$ , units 2. $\frac{2\sqrt{3}}{a} a^2 sq$ , units 4. $6\sqrt{3}a^2 sq$ , units		1. 30% 2. 6	<b>59% 3.</b> 90%	4. 138%
Explanation $r \rightarrow 1.3r$ , $\therefore A \rightarrow 1.69 r^2$ $\therefore$ Increase in area A = 69%. 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - [\frac{1}{a} + \frac{1}{b}] = \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}] - \frac{1}{10} = \frac{1}{2} [\frac{6+5+4}{60}] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{2}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 2. $\frac{2\sqrt{3}}{2} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units		Ans: 2		
$r \rightarrow 1.3r, ∴A \rightarrow 1.69 r^{2} ∴ Increase in area A = 69\%.$ 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - [\frac{1}{a} + \frac{1}{b}] = \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}] - \frac{1}{10} = \frac{1}{2} [\frac{6+5+4}{120}] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is $1. \frac{3\sqrt{3}}{2} a^{2} sq. units$ $2. \frac{\sqrt{3}}{2} a^{2} sq. units$ $4. 6\sqrt{3}a^{2} sq. units$		Explanation		
$\therefore A \rightarrow 1.69 r^{2}$ $\therefore \text{ Increase in area } A = 69\%.$ 41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{2} \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2} \left[\frac{6+5+4}{60}\right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^{2}$ sq. units 2. $\frac{\sqrt{3}}{2} a^{2}$ sq. units 2. $\frac{2\sqrt{3}}{a} a^{2}$ sq. units 4. $6\sqrt{3}a^{2}$ sq. units		$r \rightarrow 1.3r$ ,		
41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - [\frac{1}{a} + \frac{1}{b}] = \frac{1}{2} [\frac{1}{10} + \frac{1}{12} + \frac{1}{15}] - \frac{1}{10} = \frac{1}{2} [\frac{6+5+4}{60}] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 2. $\frac{2\sqrt{3}}{a} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units		$\therefore A \rightarrow 1.69 r^2$		
41. A and B together can do a piece of work in 10 days. B and C together can do it in 12 days, while A and C together can do it in 15 days. C alone can completer it in : 1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[ \frac{1}{a} + \frac{1}{b} \right] = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units				
1. 50 days 2. 40 days 3. 30 days 4. 20 days Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[ \frac{1}{a} + \frac{1}{b} \right] = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2$ sq. units 2. $\frac{\sqrt{3}}{2} a^2$ sq. units 2. $\frac{2\sqrt{3}}{2} a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units	41.	A and B together can do a days, while A and C toge	piece of work in 10 days. B ether can do it in 15 days. C al	and C together can do it in 12 lone can completer it in :
Ans:2 Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[ \frac{1}{a} + \frac{1}{b} \right] = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2 sq$ , units 2. $\frac{\sqrt{3}}{2} a^2 sq$ , units 3. $\frac{3\sqrt{3}}{2} a^2 sq$ , units 4. $6\sqrt{3}a^2 sq$ , units		1. 50 days 2. 40 days	3. 30 days	4. 20 days
Explanation Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[ \frac{1}{a} + \frac{1}{b} \right] = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2} a^2 sq.$ units 2. $\frac{\sqrt{3}}{2} a^2 sq.$ units 3. $\frac{3\sqrt{3}}{2} a^2 sq.$ units 4. $6\sqrt{3}a^2 sq.$ units		Ans:2		
Let the number days taken by A, B and C to finish the work individually be a, b and c days respectively; $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right]$ $\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[ \frac{1}{a} + \frac{1}{b} \right] = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is $1.  \frac{3\sqrt{3}}{2} a^{2} \text{ sq. units}$ $2.  \frac{\sqrt{3}}{2} a^{2} \text{ sq. units}$ $4.  6\sqrt{3}a^{2} \text{ sq. units}$		Explanation		
respectively; $ \begin{array}{c} \therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] \\ \begin{array}{c} 1 \\ - \frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[ \frac{1}{a} + \frac{1}{b} \right] = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10} \\ \qquad \qquad$	Let th	e number days taken by A, F	B and C to finish the work ind	lividually be a, b and c days
$ \therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] $ $ \frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[ \frac{1}{a} + \frac{1}{b} \right] = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{15} \right] - \frac{1}{10} = \frac{1}{2} \left[ \frac{6+5+4}{60} \right] - \frac{1}{10} $ $ = \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40} $ 42. The side of regular hexagon is a. Its area is $ 1.  \frac{3\sqrt{3}}{2} a^{2} \text{ sq. units} \qquad 2.  \frac{\sqrt{3}}{2} a^{2} \text{ sq. units} $ $ 2.  \frac{\sqrt{3}}{2} a^{2} \text{ sq. units} \qquad 4.  6\sqrt{3}a^{2} \text{ sq. units} $	respec	tively;		
$\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{2} \left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2} \left[\frac{6+5+4}{60}\right] - \frac{1}{10}$ $= \frac{15}{120} - \frac{1}{10} = \frac{15-12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is $1.  \frac{3\sqrt{3}}{2} a^{2} \text{ sq. units}$ $2.  \frac{\sqrt{3}}{2} a^{2} \text{ sq. units}$ $4.  6\sqrt{3}a^{2} \text{ sq. units}$		$\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2} \left[ \frac{1}{10} + \frac{1}{12} + \frac{1}{10} \right]$	$\left[\frac{1}{5}\right]$	
$= \frac{15}{120} - \frac{1}{10} = \frac{15 - 12}{120} = \frac{3}{120} = \frac{1}{40}$ 42. The side of regular hexagon is a. Its area is $1.  \frac{3\sqrt{3}}{2}a^{2}sq. \text{ units}$ $2.  \frac{\sqrt{3}}{2}a^{2}sq. \text{ units}$ $4.  6\sqrt{3}a^{2}sq. \text{ units}$	c	$\frac{1}{c} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \left[\frac{1}{a} + \frac{1}{b}\right] = \frac{1}{c}$	$\frac{1}{2}\left[\frac{1}{10} + \frac{1}{12} + \frac{1}{15}\right] - \frac{1}{10} = \frac{1}{2}\left[\frac{6+5}{60}\right]$	$\left[\frac{1+4}{2}\right] - \frac{1}{10}$
42. The side of regular hexagon is a. Its area is 1. $\frac{3\sqrt{3}}{2}a^2$ sq. units 2. $\frac{2\sqrt{3}}{2}a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units			$=\frac{15}{120}-\frac{1}{10}$	$=\frac{15-12}{120}=\frac{3}{120}=\frac{1}{40}$
1. $\frac{3\sqrt{3}}{2}a^2$ sq. units 2. $\frac{2\sqrt{3}}{2}a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units	42. The	side of regular hexagon is a	. Its area is	
2. $\frac{2\sqrt{3}}{2}a^2$ sq. units 4. $6\sqrt{3}a^2$ sq. units		$\frac{3\sqrt{3}}{2}$ $2^2$ so units	2. $\frac{\sqrt{3}}{2}a^2$ sq. units	
2	1.	$\frac{1}{2}$ a sq. units	2	



43.	Two trains travel in opposite direction at 36 km/hr and 45 km/hr and a man sitting in
	slower train passes the faster train in 8 seconds. The length of the faster train is :

		1. 50 m	2. 100 m	3.	120 m	4. 180 m
		Ans: 4				
	Expla	nation				
	The relative speed for travelling in opposite directions = $36+45 = 81$ kmph = $81x\frac{5}{18}$ m/s The faster train crosses a man in the slower train in 8 seconds. (Hence, slower train length					
	shou	ald not be taken into	o account).		(	
	The ler	ngth of the faster tra	in, i.e., distance =	speed x time	$=\frac{81x5}{18} \times 8 = 1$	80m
						0.
4.	x is a non-zero rational number. The product of the square of x and cube of x is equal to the					
	1) S	econd power of x		2)third po	ower of x	
	3) fifth power of x			4)sixth po	ower of x	
	Ans	: 3 (Note: The sum	is $x^2 \cdot x^3 = x^5$ )	2		
Ζ	15.	300 grams of sug make it 50% in t	ar solution has 40% the solution ?	6 sugar in it.	How much su	gar should be added to
		1. 10 gm	2. 40 gm	5. (	50 gm	4. 80 gm
ĺ	<b>T</b> 1	Ans:3				
	Explanation					
	For the given condition,					
	water content = $180 \text{ gram}$ (i.e., $60\%$ of $300$ ) and					
	sugar	content = 120  gran	(the balance amou	int, 1.e., 40%	01 500).	
	To make 50% sugar solution, the water content remains same, i.e., 180 gram and hence sugar					
	content is to be 180 gram.					
	The present sugar content is 120 gram. Therefore 60 gram sugar is to be added.					
	46. The product of three consecutive numbers is always divisible by:					
2		1. 4 2.	6	3. 8	4.	
5		Ans: 2				
	47.	An enterprising b On every subsequ previous day. On	usinessman earns a ent day, he earns a the 10 th day of bus	an income of in income wh iness, his income	Re.1 on the fi ich is just dou ome is :	rst day of his business. ble of that made on the



