1. The tool not used for marking

(a) Surface gauge (b) Angle plate (c) Divider

(d) Micrometer

Ans:(d)

2. Item used for marking aluminium work piece

> (a) Lead pencil (c) Chalk

(b) Blue pencil (d) Red pencil

Ans:(b)

erambur Note: Marking out and measuring tools These are the tools used for marking out and measuring that you need to know about: rules punches squares templates gauges micrometers scribers. Rules There are two basic types of rule: steel rule and steel tape. Both start at zero and have millimetre graduations.

- 3. The following is not probable reasons for caliper not gving correct reading
 - (a) Legs are over tight on the riveted joint (b) Legs are too free on the riveted joint
 - (c) Measuring faces are not coinciding perfectly
 - (d) Calliper is old.

Ans:(c)

- 4. Flatness is checked
 - (a) By straight edge (c) By dial test indicator

(b) By surface plate (d) By all the above

Ans:(d)

Template

6.

7.

ncir

(a) Model of an object (b) Designed to required profile in least expense (c) Made generally from mild steel sheet

(d) All of the above

Ans:(b)

Purpose of using a template

(a) For making of identical parts

(b) For checking the shape of manufactured parts

(c) Both a and b (d) None

Ans:(c)

- 8. Mass production does not have the following advantages
 - (a) Manufacturing time of component is reduced
 - (b) Cost of a component is reduced
 - (c) Components are interchangeable
 - (d) It does not require special manufacturing facility

Ans:(d)

Note: Mass production is the **manufacturing** of large quantities of standardized products, often using assembly lines or automation technology. Mass production facilitates the efficient **production** of a large number of similar products

- 9. Power may be transmitted to machines by
 - (a) Shafts (c) Chain drives and gear drives
- (b) Belt drive -Pulleys and belts (d) All the above

Ans: (d)

10. What is preventive maintenance of machines?

Preventive maintenance refers to any regularly scheduled machine maintenance intended to identify problems and repair them before failure occurs. Preventive maintenance can be split up into two predominant types: Time-based preventive maintenance such as monthly, half y yearly, yearly etcand usage-based preventive maintenance- eg., machine hours, engine hours, engine kilometer

11. The force required to punch a hole of 20 cm diameter, d on a sheet of 2 mm thick with a shear strength of 49 kg/sq mm is

(a) 6.16 T

(c) 61.6 T

(d) 30.8T

eramour

In cold punching, the clearance between punches and dies is ...% of the plate thickness

(a) 2 (b) 5 (c) 10 (d) 20

(b) 123.2 T

Ans: (d)

,ocir

Ans:(c)

12.

13. Lubricant is used

(a) To reduce friction

(b) To minimise heat between contact srfaces

- (c) To save from rust and corrosion (d) All the above Recamply Ans: (d) 14. The utility of wired edges in sheet metal (a) To strengthen the job (b) To avoid sharp edges (c) Both a and b (d) None Ans: (c) The edges of thin sheet metals can be made safe and given additional rigidity by folding the top rim around a thick wire to create a Wired Edge type of Hem. W' = 2.5 x Dia. of Wire http://wiki.dtonline.org/index.php/Wired Edge#:~:text=The%20edges%20of%20thin%20sheet, Wired%20Edge%20type%20of%20Hem. 15. In a system of limits and fits, the algebraic difference between the upper limit and lower limit is called (a) Allowance (b) Tolerance (c) Total deviation (d) Permissible deviation ns:(b) 16. A jig is device which (a) Holds the work piece nci (b) Locates the work piece (c) Holds the work piece and guides the tool (d) None Ans:(c)
 - 17. The operation performed for producing large hole in a sheet metal is called (a) Enlarging (b) Counter boring (c) Counter sinking (d)Trepanning

Ans:(d)

- Recampul 18. CNC machines are considered advantages over conventional machine because (a) They are cheaper
 - (b) Lesser skilled persons can operate the machines
 - (c) Large number of pieces can be machined with greater accuracy and speed
 - (d) Setting of the jobs on these machines is easier

Ans:(c)

- 19. Out break of fire can be avoided by preventing (b) Heat (a) Fuel
 - (c) Oxygen

Ans:(d)

20. Constituent of paint includes (a) Pigment & binder (c) Pigment binder & thinner

(b) Pigment & thinner (d) None of these

(d) Any one of the above

Ans:(a)

Note: Most paints consist of the same basic components: pigments, binders, liquids, and additives. Each component serves a role in determining the quality of the paint as well as its performance both during and after application

Constituents of Paint

Paints are variable combinations of - Binder - Pigment - Filler/ Extender - Volatile organic compound (Thinner) - Driers - Additives (Anti skinning agents, Anti settling agent, Plasticizers, fire retardants etc

https://irimee.indianrailways.gov.in/instt/uploads/files/1434527960358-Paints.pdf

21. The element giving colour to the paint

(b) Thinner

(c) Both a and b

(d) Pigment

Ans: (d)

nciè

(a) Binder

For small component of complicated shape the suitable application of paint

(a) Spray painting

(c) Flow painting

(b) Dip painting (d) Electrostatic painting

Ans:(b)

23. Galvanic corrosion requires (a) An electroiyte
(b) Anode and cathode in close contact
(c) Both a and b
(d) None of the above

Ans:(c)

Note: Galvanic corrosion refers to corrosion damage induced when two dissimilar materials are coupled in a corrosive electrolyte. The presence of an electrolyte and an electrical conducting path between the metals is essential for galvanic corrosion to occur. When a galvanic couple forms, one of the metals in the couple becomes the anode which corrodes than it would all by itself, while the other becomes the cathode. The electrolyte provides a means for ion migration whereby ions move to prevent charge build-up that would otherwise stop the reaction.

(b) Baking test

(d) None

24. The test that helps to determine porosity of the painted surface.

- (a) Salt spray test
- (c) Abrasion test

Ans:(b)

- 25. Importance of dry film thickness measurement is due to fact
 - (a) Finish depends on thickness
 - (b) Protection depends on thickness
 - (c) Glass depends on thickness
 - (d) Spread and consumption of paint can be compared

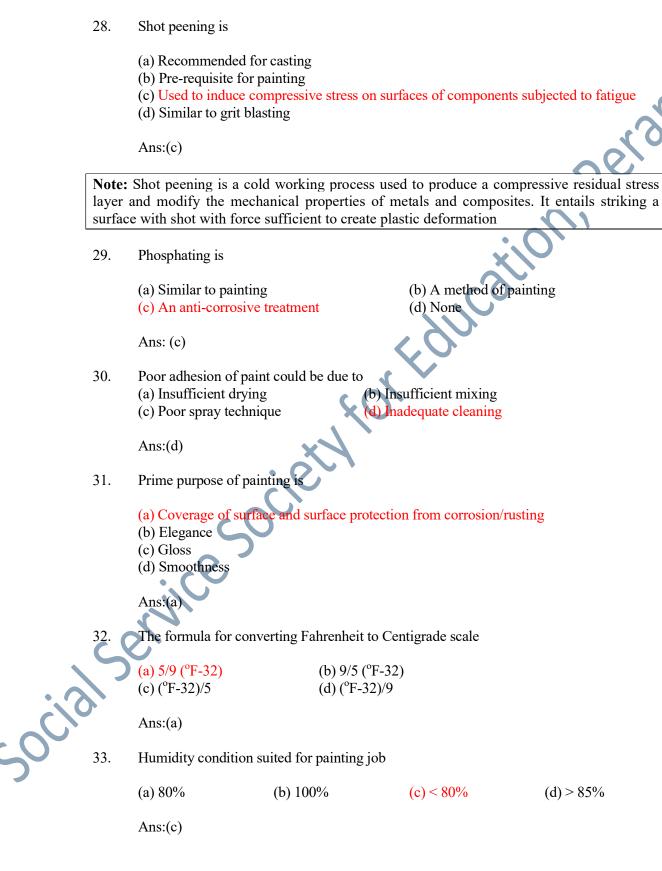
Ans:(b)

- 26. Gloss of painted surface
 - (a) Highlights the imperfection on the surface
 - (b) Reduces imperfection
 - (c) Both a and b
 - (d) None

Ans:(a)

NOTE: HOW IS GLOSS OF PAINTED SURFACE MEASURED?

A **glossmeter** (also **gloss meter**) is an instrument which is used to measure the specular reflection (gloss) of a surface. Gloss is determined by projecting a beam of light at a fixed intensity and angle onto a surface and measuring the amount of reflected light at an equal but opposite angle.


- 27. Measure of paint dry film thickness is given by
 - (a) Metre

(b) sq.mm

(c) Microns

mour

Ans:(c)

	34.	Advantage of heat treatment of metal
		 (a) Hard metal can be softened (b) Soft metal can be hardened (c) Machinability/cold working of metal can be improved(process annealing) (d) All the above
		Ans: (d)
	35.	Which of the following process does not belong to heat treatment
		(a) Annealing (b) Hardening (c) Normalising (d) Trepanning
		Ans: (d)
	The n	nost commonly used operations of heat treatment for iron and steel are:
		nealing
		rmalising
		rdening
		mpering
		ace hardening/Case hardening METHODS arising (Case-Hardening)
	Cyani	
	Nitrid	
		tion Hardening
	Flame	e-Hardening.
	26	
	36.	Sound waves cannot travel through
		(1) Lease (2) Minard Oil (4) Maximum
		(1) Iron (2) Hydrogen (3) Mineral Oil (4) Vacuum
	37.	A generator converts
	57.	A generator converts
		(1) Mechanical energy into light energy
		(2) Electrical energy into mechanical energy
	6	(3) Mechanical energy into electrical energy
		(4) None of these
	20	A motor converts
	5 8.	A motor converts
cocif		(1) Mechanical energy into light energy
(\mathbf{U})		(2) Electrical energy into mechanical energy
		(3) Mechanical energy into electrical energy
		(4) None of these

39. Which of the following currents is considered dangerous for the human body?

(1) 1 A (2) 1 mA (3) 30 mA and above (4) 50 mA

Ans (3). When an electrical current passes through the body, the nervous system experience an electric shock. The intensity of the shock depends mainly on the strength of the current and the path taken by the current through the body and the duration of contact.

Note	1:			
GEN	ERAL EFFECTS OF	ELECTRIC CURRENT		
	Electric current (contact for 1s)		Effect	
	Below 1 mA	Not perceptible		
	1 mA	Threshold of feeling, tingling		
	5 mA	Slight shock. Not painful. Average individual	can let go. Involuntary reaction can lead to indire	ct injuries
	6-25 mA (women)	Painful shocks. Loss of muscle control		
	9 to 30 mA (men)	Freezing current, "can't let go". The person m reaction can lead to involuntary injuries	ay be thrown away from the power source. Indivi	idual cannot let go. Strong involuntary
	50 to 150 mA	Extreme pain. Respiratory arrest. Muscles read	ctions. Possible Death.	
	1 to 4.3 A	Fibrillation of the heart. Muscular contraction	and nerve damage occur. Likely death.	
	10 A	Cardiac arrest, severe burns. Death is probab	le	
It is b	believed that the cur		not dangerous. The cur	
It is b mA is body	believed that the curs s dangerous because	rent below 5mA are at the sufferer loses mu		esistance of the huma
It is b mA is body 230/2	believed that the curs s dangerous because has assumed as 20 0,000 = 11.5 mA.	rent below 5mA are at the sufferer loses mu	not dangerous. The cur iscular control. If the re rith 230 volt supply ca	esistance of the huma
It is b mA is body 230/2	believed that the curs s dangerous because has assumed as 20 0,000 = 11.5 mA.	rent below 5mA are to the sufferer loses multiple $k\Omega$, then a contact w	not dangerous. The cur iscular control. If the re rith 230 volt supply ca	esistance of the huma
It is b mA is body 230/2	believed that the curs s dangerous because has assumed as 20 0,000 = 11.5 mA. The rate of change	rent below 5mA are to the sufferer loses muk Ω , then a contact w	not dangerous. The cur iscular control. If the re with 230 volt supply ca	esistance of the huma in be potentially fata
It is b mA is body 230/2	believed that the curs s dangerous because has assumed as 20 0,000 = 11.5 mA. The rate of change (1) Acceleration Ans: (1)	rent below 5mA are to the sufferer loses muk Ω , then a contact w	not dangerous. The cur iscular control. If the re with 230 volt supply ca ing body is (3) Momentum	esistance of the huma in be potentially fata
It is b mA is body 230/2	believed that the curs s dangerous because has assumed as 20 0,000 = 11.5 mA. The rate of change (1) Acceleration Ans: (1)	rrent below 5mA are to the sufferer loses muk Ω , then a contact we of velocity of a move (2) Velocity	not dangerous. The cur iscular control. If the re with 230 volt supply ca ing body is (3) Momentum	esistance of the huma an be potentially fata
It is b mA is body	believed that the curs s dangerous because has assumed as 20 0,000 = 11.5 mA. The rate of change (1) Acceleration Ans: (1) The rate of change	rent below 5mA are to the sufferer loses mu kΩ, then a contact w e of velocity of a move (2) Velocity	not dangerous. The cur iscular control. If the re with 230 volt supply ca ing body is (3) Momentum moving body is	esistance of the huma an be potentially fata (4) Impulse

sssfep.com

		(1) Power	(2) energy	(3) pressure	(4) entropy		
		Ans: (3)				۶.	
	43.	An electric bulb (now phased out) has a filament made of:					
		(1) Copper	(2) Carbon	(3) Nichrome	(4) Tungsten		
		Ans: (4)			Rere		
	44.	In an electrical circu	it, a fuse is con	nected	an'		
		(1) In the live wire		(2) in the neutral wire	\mathcal{V}		
		(3) In the earth wire	:	(4) anywhere – it makes	no difference		
		Ans: (3)					
	Note: T	he fuse wire is always	connected in t	he live wire of the circuit	because if the fuse is put		
		•		low of current when the	-		
			e appliance ren	nains connected to the high	gh potential point of the		
	supply 1	hrough the live wire					
	45.	The device used for	converting elec	trical energy into mechan	ical energy is		
	чу.	The device used for	converting elec	thear energy into meenan	ical chergy is		
		(1) Cell	\mathbf{O}	(2) Transformer			
		(3) Dynamo		(4) Electric moto	or		
		Ans: (4)					
	46.	The process by whic	h heat generate	d in the Sun is due to			
	C	(1)Fission of Uraniu (3) Fusion of Hydrog		(2) fusion of Helium(4) combination of all the	nese process		
	$\langle \mathcal{I} \rangle$		gen		lese process		
• . (2	Ans: (3)					
coċ	47.	The process by whic	h heat is genera	tted in a nuclear reactor is	due to		
5		(1)Fission of Uraniu	matoms	(2) fusion of Helium ato	oms		
-		(3) Fusion of Hydrog	gen atoms	(4) combination of all the	lese process		
		Ans: (1)					

48. The work done in holding a weight of 20 kg at a height of 1 m above the ground is

(1) Zero	(2) 20 J
(3) 200 J	(4) 2000 J

Ans: (1)

Note: In the absence of displacement of a force, no work is done.

eramour 49. The device used for converting mechanical energy into electrical energy is

(1) Cell

(3) Dynamo

(2) Transformer (4) Electric motor

Ans: (3)

Hydraulic press/ hydraulic brakes in automobiles work on the principle of: 50.

(1) Newton's second law of motion socialsenicesocieturs (3) Pascal's law

(2) Posieuille's principle (4) Archimedes' principle